

Uncovering Vulnerabilities in Bluetooth Devices with Automated Binary Analysis

Zhiqiang Lin zlin@cse.ohio-state.edu

03/26/2021

Introduction •0000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
What is	Bluetootl	h				

Bluetooth wireless technology

- ► Low-cost, low-power
- ► Short-range radio
- For ad-hoc wireless communication
- ► For voice and data transmission

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
• 00000	00000	0000000	00000000000	00	00000	O
What is	s Bluetootl	า				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Why Na	amed Blue	tooth				

Harald "Bluetooth" Gormsson

- ► King of Denmark 940-981.
- He was also known for his bad tooth, which had a very dark blue-grey shade.
- He united the Tribes of Denmark.

The Bluetooth wireless specification design was named after the king in 1997, based on an analogy that the technology would unite devices the way Harald Bluetooth united the tribes of Denmark into a single kingdom.

Introduction 00000	Background	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
M/by Nr	amed Rlue	tooth				

Harald "Bluetooth" Gormsson

- ► King of Denmark 940-981.
- He was also known for his bad tooth, which had a very dark blue-grey shade.
- He united the Tribes of Denmark.

The Bluetooth wireless specification design was named after the king in 1997, based on an analogy that the technology would unite devices the way Harald Bluetooth united the tribes of Denmark into a single kingdom.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
	00000	0000000	0000000000	00	00000	O
History	of Blueto	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work 00	Takeaway 00000	References O
History	of Blueto	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work 00	Takeaway 00000	References O
History	of Blueto	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
History	of Bluetoo	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
History	of Bluetoo	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
History	of Bluetoo	oth				

Introduction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
History	of Blueto	oth				

6.2 billion

 Introduction
 Background
 BLEScope [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 00000
 000000
 0000000
 00
 000000
 0
 000000
 0

Total Annual Bluetooth Device Shipments [SIG:

Annual Bluetooth Audio Streaming Device Shipments

00000

Total Annual Bluetooth Device Shipments

Annual Bluetooth Audio Streaming Device Shipments

Annual Bluetooth Phone, Tablet & PC Shipments

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 Total Annual Bluetooth Device Shipments [SIG20]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References
 O

7% CAGR

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 Total
 Appual
 Bluetooth
 Dougles
 Shipmonts
 [SIC00]
 Shipmonts
 Shipmonts

Total Annual Bluetooth Device Shipments [SIG

Bluetooth IoT Devices and Companion Apps

BLE IoT Devices

 Introduction
 Background
 BLEScope
 [ZWLZ19]
 FirmXRay
 [WLZ20]
 Future Work
 Takeaway
 References

 00000
 0000000
 000000000000
 00
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Bluetooth IoT Devices and Companion Apps

BLE IoT Devices

Companion Mobile Apps

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 The General Workflow of BLE IoT Devices and Companion Apps

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 The General Workflow of BLE IoT Devices and Companion Apps

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 The General Workflow of BLE IoT Devices and Companion Apps

C						
	00000	0000000	0000000000			
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	

BLE-Guardian [KKS16]

Protecting Privacy of BLE Device Users. In USENIX Security 2016.

 Defending against sensitive information leakage during broadcasting

	. I A					
	00000	0000000	000000000000000000000000000000000000000	00		
Introduction	Rackground	DI EScong [7\// 710]	Eirm V Pour [M/L 720]	Euturo Work	Takaaway	

BlueShield [WNK⁺20a]

BlueShield: Detecting Spoofing Attacks in Bluetooth Low Energy Networks. In RAID 2020.

 Detecting spoofing BLE devices during broadcasting.

C						
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

KNOB [ATR19]

The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR. In USENIX Security 2019.

- An attacker forces victims to agree on an encryption key with only one byte of entropy.
- Windows/iOS have fixed it

	. I A					
	00000	0000000	000000000000000000000000000000000000000	00		
Introduction	Rackground	DI EScong [7\// 710]	Eirm V Pour [M/L 720]	Euturo Work	Takaaway	

BIAS [ATR20]

BIAS: Bluetooth Impersonation AttackS. In Oakland 2020.

 An attacker forces victims to use P-192 curve instead of using P-256 curve.

C						
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

BLESA [WNK⁺20b]

BIESA: Spoofing Attacks against Reconnections in Bluetooth Low Energy. In WOOT 2020.

- Fake BLE device attacks against mobiles.
- Android and iOS have fixed it

<u> </u>	C A					
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

Crackle [Rya13]

With Low Energy Comes Low Security. In WOOT 2013.

- Brute force attacks against long term keys.
- Bluetooth after 4.1 is no longer vulnerable

CLAIR C	ι I Λ					
00000	00000	0000000	0000000000	00	00000	0
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

Bluetooth Method Confusion [VTPFG21]

Method Confusion Attack on Bluetooth Pairing. In Oakland 2021

- Man in the middle attack (similar to the active attacks against DH)
- Attackers manipulates the pairing methods and target the ECDH key exchange process.

C						
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

BadBluetooth [XDL+19]

Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals. In NDSS 2019.

- Fake devices manipulate BLE communication due to the lack of app-level authentication.
- Defense is up to the apps

~	<u> </u>					
Introduction 00000	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References 0

Mis-Bonding [NZD+14]

Inside Job: Understanding and Mitigating the Threat of External Device Mis-Bonding on Android.. In NDSS 2014.

- Malicious apps manipulate BLE communication due to lack of app-level authentication.
- Defense is up to the devices

C	. I A					
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	

Co-Located Attacks [SB19]

A Study of the Feasibility of Co-located App Attacks against BLE and a Large-Scale Analysis of the Current Application-Layer Security Landscape. In USENIX Security 2019.

 Large-scale analysis of mis-bonding issues.

C						
	00000					
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

Gattacking [Jas16]

Gattacking Bluetooth Smart Devices. In Black hat USA conference 2016.

 Poorly designed communication protocols are subject to various attacks (e.g., replay attacks).

~	<u> </u>					
Introduction 00000	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References 0

Frankenstein [RCGH20]

Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. In USENIX Security 2020.

 BLE Fuzzing tool injects HCI traffic or Bluetooth frames into Bluetooth communication in order to uncover Remote Code Execution bugs.

Downgrade Attacks [ZWD+20]

Breaking Secure Pairing of BLE Using Downgrade Attacks. In USENIX Security 2020.

⇒

Mis-Bonding [NZD+14

Co-Located Attacks [SB19]

Downgrade Attack [ZWD+20]

MethodConfusion [VTPFG20]

10 Communication

Crackle [Rya13];

KNOB[ATR19]

8. Key distribution (e.g. IRK)

BadBluetooth [XDL+19]

Authentication and encryption

9. Authentication (App level)

BIAS [ATR21]

BLEScope [ZWLZ19]

BLEScope: Automatic Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps. In ACM CCS 2019.

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 The Key Finding in BLESCOPE [ZWLZ19]
 EXAMPLE [ZWLZ19]</td

Key Observation

- UUIDs are broadcasted by BLE loT devices to nearby phones.
- UUIDs are static.
- Mobile apps contain UUIDs.
- Mobile apps identify target BLE loT devices based on their broadcasted UUIDs.

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 Attack:
 How to Fingerprint a BLE IoT Device with Static UUIDs

 Introduction
 Background
 BLESCOPE [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 Attack:
 How to Fingerprint a BLE IoT Device with Static UUIDs

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	00000000	00000000000		00000	O
Introdu	cing BLES	cope				

"Automatic Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps". Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. In Proceedings of the 26th ACM Conference on Computer and Communications Security (CCS'19), London, UK. November 2019

- **Novel Discovery**. We are the *first* to discover BLE IoT devices can be fingerprinted with static UUIDs.
- **Effective Techniques**. We have implemented an automatic tool BLESCOPE to harvest UUIDs and detect vulnerabilities from mobile apps.
- Sevaluation. We have tested our tool with 18,166 BLE mobile apps from Google Play store, and found 168,093 UUIDs and 1,757 vulnerable BLE IoT apps.
- Countermeasures. We present channel-level protection, app-level protection, and protocol-level protection (with dynamic UUID generation).

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 00000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Overvie	w of BLES	Scope				

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Overvie	w of BLES	Scope				

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Overvie	w of BLES	Scope				

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Overvie	w of BLES	Scope				

Challenges

- How to extract UUIDs from mobile apps
- How to reconstruct UUID hierarchy
- One of the second se

Solutions: Using Automated Program Analysis

- Resolving UUIDs using context and value-set analysis
- Reconstructing UUID hierarchy with control dependence 2
- Identifying flawed authentication with **data dependence** 8

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
Recults	from Goo	ale Play Store				

IoT Mobile App Collection

- We downloaded 2 million mobile apps from Google Play as of April 2019.
- **②** We identified BLE IoT apps by searching for after-connection BLE APIs.
- 18,166 BLE IoT apps are found for our analysis

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
Reculte	from Goo	ale Play Store				

IoT Mobile App Collection

- We downloaded 2 million mobile apps from Google Play as of April 2019.
- **②** We identified BLE IoT apps by searching for after-connection BLE APIs.
- 18,166 BLE IoT apps are found for our analysis

ltem	Value	%
# Apps Support BLE	18,166	100.0
# "Just Works" Pairing	11,141	61.3
# Vulnerable Apps	1,757	15.8
# Absent Cryptographic Usage	1,510	13.6
# Flawed Authentication	1,434	12.9

Table: Insecure app identification result.
Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Results	from Goo	gle Play Store				

IoT Mobile App Collection

- We downloaded 2 million mobile apps from Google Play as of April 2019.
- **②** We identified BLE IoT apps by searching for after-connection BLE APIs.
- 18,166 BLE IoT apps are found for our analysis

ltem	Value	%
# Apps Support BLE	18,166	100.0
# "Just Works" Pairing	11,141	61.3
# Vulnerable Apps	1,757	15.8
# Absent Cryptographic Usage	1,510	13.6
# Flawed Authentication	1,434	12.9

Table: Insecure app identification result.

Category	# Арр	"Just Works"	Absent Crypto	Flawed Auth.
Health & Fitness	3,849	2,639	221	207
Tools	2,833	1,895	385	362
Lifestyle	2,173	1,081	147	141
Business	1,660	972	90	85
Travel & Local	967	582	90	87

Table: Top 5 category of the IoT apps.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

BLE Sniffer

- Raspberry-Pi
- ► Parani-UD100 (Bluetooth adapter)
- ► Antenna RP-SMA-R/A (1km range)
- ► SIM7000A GPS module (GPS sensor)

Introduction 00000	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O	
Results from Our Field Test							

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

Item	Value	%
# Unique BLE Device	30,862	
# Unique BLE Device w. UUID	5,822	18.9
# Fingerprintable	5,509	94.6
# Vulnerable	431	7.4
# Sniffable	369	6.7
# Unauthorized Accessible	342	6.2

Table: Experimental result of our field test.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

Company Name	# Devices
Google	2,436
Tile, Inc.	441
-	243
-	208
Logitech International SA	131
Nest Labs Inc.	114
Google	92
Hewlett-Packard Company	74
-	46
-	44
-	44

Table: Top 10 devices in the field test.

Introduction 00000	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

Company Name	# Devices
Google	2,436
Tile, Inc.	441
-	243
-	208
Logitech International SA	131
Nest Labs Inc.	114
Google	92
Hewlett-Packard Company	74
-	46
-	44
-	44

Table: Top 10 devices in the field test.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

Device Description	# Device
Digital Thermometer	7
Car Dongle	6
Key Finder A	6
Smart Lamp	5
Key Finder B	5
Smart Toy A	4
Smart VFD	4
Air Condition Sensor	4
Smart Toy B	4
Accessibility Device	4

Table: Top 10 vulnerable devices.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Results	from Our	Field Test				

Device Description	# Device
Digital Thermometer	7
Car Dongle	6
Key Finder A	6
Smart Lamp	5
Key Finder B	5
Smart Toy A	4
Smart VFD	4
Air Condition Sensor	4
Smart Toy B	4
Accessibility Device	4

Table: Top 10 vulnerable devices.

Introduction 00000	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20] 00000000000	Future Work 00	Takeaway 00000	References O
D	<u> </u>	E LET				

Results from Our Field Test

FirmXRay [WLZ20]

FirmXRay: Detecting Bluetooth Link Layer Vulnerabilities From Bare-Metal Firmware. In ACM CCS 2020.

Introd 0000	luction	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References 0

DLE LINK Layer vuinerabilities

Vulnerabilities

Identity Tracking. Configure static MAC address during broadcast [DPCM16].

00000	00000	0000000	0000000000	00	00000	O
BLE Li	nk Layer V	ulnerabilities				

Vulnerabilities

- Identity Tracking. Configure static MAC address during broadcast [DPCM16].
- Active MITM. Just Works is adopted as the pairing method.

		/ 1		00	00000	0
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

Vulnerabilities

- Identity Tracking. Configure static MAC address during broadcast [DPCM16].
- Active MITM. Just Works is adopted as the pairing method.
- Passive MITM. Legacy pairing is used during key exchange [ble14].

	00000	000000	000000000	00	00000	0
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

BLE Link Layer Vulnerabilities

Vulnerabilities

- Identity Tracking. Configure static MAC address during broadcast [DPCM16].
- Active MITM. Just Works is adopted as the pairing method.
- Passive MITM. Legacy pairing is used during key exchange [ble14].

Identification

- Traffic analysis
- Ø Mobile app analysis

	00000	000000	000000000	00	00000	0
Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References

Vulnerabilities

- Identity Tracking. Configure static MAC address during broadcast [DPCM16].
- Active MITM. Just Works is adopted as the pairing method.
- Passive MITM. Legacy pairing is used during key exchange [ble14].

Identification

- Traffic analysis
- 2 Mobile app analysis
- In Firmware analysis

An Example of a Just Works Pairing Vulnerability

		Read On	ly Mem	iory	
1	243a8	mov	r2,	#0x0	
2	243aa	orr	r2,	#Ox1	
3	243ac	and	r2,	#0xe1	
4	243ae	add	r2,	#0xc	
5	243b0	and	r2,	#Oxdf	
6	243b2	ldr	r1,	[0x260c8]	
7	243b4	str	r2,	[r1,#0x0]	
8	25f44	ldr	r2,	[0x260c8]	
9	25f46	mov	r1,	#0x0	
10	25f48	SVC	0x71	5	
//	SD_BLE	_GAP_SEC	C_PARA	MS_REPLY	
11	260c8	0x200	03268		
		// blo	e_gap_	sec_parms_	t*

$$r1 = 0x0$$
$$r2 = 0x0$$

An Example of a Just Works Pairing Vulnerability

		Read Onl	y Mem	ory	
1	243a8	mov	r2,	#0x0	
2	243aa	orr	r2,	#0x1	
3	243ac	and	r2,	#0xe1	
4	243ae	add	r2,	#0xc	
5	243b0	and	r2,	#0xdf	
6	243b2	ldr	r1 ,	[0x260c8]	
7	243b4	str	r2,	[r1,#0x0]	
8	25f44	ldr	r2,	[0x260c8]	
9	25f46	mov	r1,	#0x0	
10	25f48	SVC	0x7	E	
11	SD_BLE	_GAP_SEC	_PARA	MS_REPLY	
11	260c8	0x2000	3268		
		// ble	_gap_	sec_parms_t	ł

$$r1 = 0x0$$
$$r2 = 0xD$$

 Introduction
 Background
 BLESCOPE
 [ZWLZ19]
 FirmXRay
 [WLZ20]
 Future Work
 Takeaway
 References

 00000
 0000000
 000000000
 00
 00000000
 00
 000000
 0

An Example of a Just Works Pairing Vulnerability

Read Only	Memory
-----------	--------

	1	243a8	mov	r2,	#0x0
	2	243aa	orr	r2,	#0x1
	3	243ac	and	r2,	#0xe1
	4	243ae	add	r2,	#0xc
	5	243b0	and	r2,	#0xdf
➡	6	243b2	ldr	r1,	[0x260c8]
1	7	243b4	str	r2,	[r1,#0x0]
	8	25f44	ldr	r2,	[0x260c8]
	9	25f46	mov	r1,	#0x0
	10	25f48	SVC	0x7	E
	11	SD BLE	GAP SEC	PARA	MS REPLY
	11	260c8	0x20003	<mark>3268</mark>	
			// ble	gap	sec_parms_t*

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature

Register Values

r1 = 0x20003268r2 = 0xD

20003269	<pre>uint8 min_key_size</pre>	
20003270	<pre>uint8 max_key_size</pre>	
20003271	ble_gap_sec_kdist_t	kdist_own
20003275	ble_gap_sec_kdist_t	kdist_peer

 Introduction
 Background
 BLESCOPE
 [ZWLZ19]
 FirmXRay
 [WLZ20]
 Future Work
 Takeaway
 References

 00000
 0000000
 000000000
 00
 00000000
 00
 000000
 0

An Example of a Just Works Pairing Vulnerability

		Read On	ly Men	nory	
1	243a8	mov	r2,	#0x0	
2	243aa	orr	r2,	#0x1	
3	243ac	and	r2,	#0xe1	
4	243ae	add	r2,	#0xc	
5	243b0	and	r2,	#Oxdf	
6	243b2	ldr	r1,	[0x260c8]	
7	243b4	str	r2,	[r1,#0x0]	
8	25f44	ldr	r2,	[0x260c8]	
9	25f46	mov	r1,	#OxO	
10	25f48	SVC	0x7 :	E	
//	SD_BLE	GAP_SEC	C_PARA	MS_REPLY	
11	260c8	<mark>0x200</mark>	<mark>03268</mark>		
		// bl	e_gap_	sec_parms_	t*

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature = 0xD

20003269 uint8 min_key_size 20003270 uint8 max_key_size 20003271 ble_gap_sec_kdist_t kdist_own 20003275 ble gap sec kdist t kdist peer

Register Values

r1 = 0x20003268r2 = 0xD

An Example of a Just Works Pairing Vulnerability

Read Onl	y Memory
----------	----------

	1	243a8	mov	r2,	#0x0	
	2	243aa	orr	r2,	#0x1	
	3	243ac	and	r2,	#0xe1	
	4	243ae	add	r2,	#0xc	
	5	243b0	and	r2,	#Oxdf	
	6	243b2	ldr	r1 ,	[0x260c8]	
	7	243b4	str	r2,	[r1,#0x0]	
	8	25f44	ldr	r2,	[0x260c8]	
	9	25f46	mov	r1,	#0x0	
	10	25f48	SVC	0x7	E	
1	11	SD_BLE_	GAP_SEC	PARA	MS_REPLY	
	11	260c8	0x2000	3268		
			// ble	gap	sec_parms_t	*

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature = 0xD

20003269 uint8 min_key_size 20003270 uint8 max_key_size 20003271 ble_gap_sec_kdist_t kdist_own 20003275 ble_gap_sec_kdist t kdist peer

Register Values

r1 = 0x0r2 = 0x20003268 Introduction Background BLESCOPE [ZWLZ19] FirmXRay [WLZ20] Future Work Takeaway References

An Example of a Just Works Pairing Vulnerability

Read Only Memory

	1	243a8	mov	r2,	#0x0	
	2	243aa	orr	r2,	#0x1	
	3	243ac	and	r2,	#0xe1	
	4	243ae	add	r2,	#0xc	
	5	243b0	and	r2,	#Oxdf	
	6	243b2	ldr	r1,	[0x260c8]	
	7	243b4	str	r2,	[r1,#0x0]	
	8	25f44	ldr	r2,	[0x260c8]	
	9	25f46	mov	r1,	#0x0	
	10	25f48	SVC	0x71	E	
1	11	SD_BLE_	GAP_SEC	PARA	MS_REPLY	
	11	260c8	<mark>0x200(</mark>	<mark>)3268</mark>		
			// ble	_gap_	sec_parms_t	*

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature = 0xD

	BOND	МІТМ	ю	OOB	
	// BOI	ND = 1,	MIT	M = 0	
	// IO	= 3,	00B	= 0	
20003269	uint8 m	in_key_	size		
20003270	uint8 m	ax_key_	size		
20003271	ble_gap	sec_kd	ist_	t kdis	t_own
20003275	ble_gap	_sec_kd	ist_	t kdis	t_peer

```
r1 = 0x0
r2 = 0x20003268
```

Introduction Background BLEScope [ZWLZ19] FirmXRay [WLZ20] Future Work Takeaway References

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling

Read Only Memory

1	243a8	mov	r2,	#0x0
2	243aa	orr	r2,	#0x1
3	243ac	and	r2,	#0xe1
4	243ae	add	r2,	#0xc
5	243b0	and	r2,	#0xdf
6	243b2	ldr	r1,	[0x260c8]
7	243b4	str	r2,	[r1,#0x0]
8	25f44	ldr	r2,	[0x260c8]
9	25f46	mov	r1,	#0x0
10	25f48	SVC	0x7 :	E
11	SD_BLE	GAP_SEC	PARA	MS_REPLY
11	260c8	0x2000	3268	
		// ble	_gap_	<pre>sec_parms_t*</pre>

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature = 0xD

BOND	МІТМ	ю	OOB	
// BOI	ND = 1,	MIT	м = 0	
// IO	= 3,	00B	= 0	
uint8 m	in_key_	size		
uint8 m	ax_key_	size		
ble_gap	sec_kd	ist_	t kdis	st_own
ble_gap	_sec_kd	ist_	t kdis	st_peer
	BOND // BOJ // IO uint8 m uint8 m ble_gap ble_gap	BOND MITM // BOND = 1, // IO = 3, uint8 min_key_ uint8 max_key_ ble_gap_sec_kd ble_gap_sec_kd	BOND MITM 10 // BOND = 1, MIT // IO = 3, 00B uint8 min_key_size uint8 max_key_size ble_gap_sec_kdist_ ble_gap_sec_kdist_	BOND MITM 10 OOB // BOND = 1, MITM = 0 // IO = 3, OOB = 0 uint8 min_key_size uint8 max_key_size ble_gap_sec_kdist_t kdis ble_gap_sec_kdist_t kdis

$$r1 = 0x0$$

 $r2 = 0x20003268$

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling

Read Only Memory

1	243a8	mov	r2,	#0x0
2	243aa	orr	r2,	#0x1
3	243ac	and	r2,	#0xel
4	243ae	add	r2,	#0xc
5	243b0	and	r2,	#Oxdf
6	243b2	ldr	r1,	[0x260c8]
7	243b4	str	r2,	[r1,#0x0]
8	25f44	ldr	r2,	[0x260c8]
9	25f46	mov	r1,	#0x0
10	25f48	SVC	0x7 :	E
11	SD_BLE_	GAP_SEC	_PARA	MS_REPLY
11	260c8	<mark>0x2000</mark>	3268	
		// ble	_gap_	<pre>sec_parms_t*</pre>

Recognize data structures

Random Access Memory

Struct ble_gap_sec_params_t

20003268 uint8 pairing_feature = 0xD

	BOND	МІТМ	ю	OOB	
	// BOI	ND = 1,	MIT	M = 0	
	// IO	= 3,	00B	= 0	
20003269	uint8 m	in_key_	size		
20003270	uint8 m	ax key	size		
20003271	ble_gap	sec_kd	ist_	t kdis	t_own
20003275	ble_gap	sec_kd	ist_	t kdis	t_peer

$$r1 = 0x0$$

 $r2 = 0x20003268$

00000000000 An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling

Read Only Memory

1	243a8	mov	r2,	#0x0
2	243aa	orr	r2,	#0x1
3	243ac	and	r2,	#0xe1
4	243ae	add	r2,	#0xc
5	243b0	and	r2,	#0xdf
6	243b2	ldr	r1,	[0x260c8]
7	243b4	str	r2,	[r1,#0x0]
8	25f44	ldr	r2,	[0x260c8]
9	25f46	mov	r1,	#0x0
10	25f48	svc	0x7	E
11	SD_BLE_	GAP_SEC	PARA	MS_REPLY
11	260c8	<mark>0x2000</mark>	<mark>3268</mark>	
		// ble	gap_	<pre>sec_parms_t*</pre>

Recognize data structures

Random Access Memory

Struct ble gap sec params t

20003268 uint8 pairing feature = 0xD

	BOND	МІТМ	ю	OOB	
	// BO	ND = 1,	MIT	M = 0	
	// IO	= 3,	00B	= 0	
20003269	uint8 m	in_key_	size		
20003270	uint8 m	ax_key_	size		
20003271	ble_gap	_sec_kd	ist_	t kdis	t_own
20003275	ble_gap	sec_kd	ist_	t kdis	t_peer

Value computation

Register Values

r1 0×0 = r2 = 0x20003268

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
FirmXR	ay Overvie	ew				

Robust Firmware Disassembling

Absolute Pointers:	0x22A90,	0x23058

Gadgets:	0x07A90,	$0 \ge 0 \ge$
----------	----------	---

Robust Firmware Disassembling

Base

0x0

 Absolute Pointers:
 0x22A90, 0x23058

 Gadgets:
 0x07A90, 0x08058

N(0x1B000) = 2

Precise Data Structure Recognition

Read Only Memory

Read Only Memory					
1	243a8	mov	r2,	#0x0	
2	243aa	orr	r2,	#0x1	
3	243ac	and	r2,	#0xe1	
4	243ae	add	r2,	#0xc	
5	243b0	and	r2,	#0xdf	
6	243b2	ldr	r 1,	[0x260c8]	
7	243b4	str	r2,	[r1,#0x0]	
	••				
8	25f44	ldr	r2,	[0x260c8]	
9	25f46	mov	r1,	#0x0	
1	0 <mark>25f48</mark>	SVC	0x7	E	
/	/ SD_BLE	_GAP_SEC	C_PARA	MS_REPLY	
•	••				
1	1 260c8	0x200 // blo	03268 e_gap_	sec_parms_	_t*

Read Only Memory 243a8 mov r2, #0x0 243aa orr r2. #0x1 243ac r2, #0xe1 and 243ae r2, #0xc add 243b0 r2, #0xdf and 243b2 ldr r1, [0x260c8] 243b4 strr2, [r1, #0x0]25f44 ldr [0x260c8] 25f46 mov r1, #0x0 10 25f48 SVC 0x7fSD BLE GAP SEC PARAMS REPLY . . . 11 260c8 0x20003268 // ble gap sec parms t*

ldr	<mark>r2</mark> ,	[0x260c8]
str	<mark>r2</mark> ,	[<mark>r1</mark> , #0x0]

Read Only Memory					
1	243a8	mov	r2,	#0x0	
2	243aa	orr	r2,	#Ox1	
3	243ac	and	r2,	#0xe1	
4	243ae	add	r2,	#0xc	
5	243b0	and	r2,	#Oxdf	
6	243b2	ldr	r 1,	[0x260c8]	
7	243b4	str	r2,	[r1,#0x0]	
8	25f44	ldr	r2,	[0x260c8]	
9	25f46	mov	r1,	#0x0	
10	25f48	SVC	0x71	E	
//	SD_BLE	GAP_SEC	PARA	MS_REPLY	
• • •					
11	260c8	0x2000	3268		
		// ble_	_gap_	<pre>sec_parms_t*</pre>	

ldr	<mark>r2</mark> ,	[0x260c8]
str	<mark>r2</mark> ,	[<mark>r1</mark> , #0x0
ldr	<mark>r1</mark> ,	[0x260c8]
and	<mark>r2</mark> ,	#0xdf
add	<mark>r2</mark> ,	#0xc
and	<mark>r2</mark> ,	#0xe1
orr	<mark>r2</mark> ,	#0x1
mov	<mark>r2</mark> ,	#0x0

	Read Only Welliory					
1	243a8	mov	r2,	# 0 x0		
2	243aa	orr	r2,	#Ox1		
3	243ac	and	r2,	#0xe1		
4	243ae	add	r2,	#0xc		
5	243b0	and	r2,	#Oxdf		
6	243b2	ldr	r1,	[0x260c8]		
7	243b4	str	r2,	[r1,#0x0]		
8	25f44	ldr	r2,	[0x260c8]		
9	25f46	mov	r1,	#0x0		
10	25f48	SVC	0x71			
//	SD_BLE	GAP_SEC	PARA	MS_REPLY		
11	260c8	0x2000	3268			
		// ble	gap_	<pre>sec_parms_t*</pre>		

Road Only Momony

Configuration Value Resolution

Policy	Policy SDK Function Name		Description
	SD_BLE_GAP_ADDR_SET	0	Configure the MAC address
	SD_BLE_GAP_APPEARANCE_SET	0	Set device description
	SD_BLE_GATTS_SERVICE_ADD	0,1	Add a BLE GATT service
(i)	SD_BLE_GATTS_CHARACTERISTIC_ADD	2	Add a BLE GATT characteristic
	SD_BLE_UUID_VS_ADD	0	Specify the UUID base
	GAP_ConfigDeviceAddr*	0	Setup the address type
	GATTServApp_RegisterService*	0	Register BLE GATT service
	SD_BLE_GAP_SEC_PARAMS_REPLY	2	Reply peripheral pairing features
	SD_BLE_GAP_AUTH	1	Reply central pairing features
(ii)	SD_BLE_GAP_AUTH_KEY_REPLY	1, 2	Reply with an authentication key
	SD_BLE_GATTS_CHARACTERISTIC_ADD	2	Add a BLE GATT characteristic
	GAPBondMgr_SetParameter*	2	Setup pairing parameters
	GATTServApp_RegisterService*	0	Register BLE GATT service
(:::)	SD_BLE_GAP_LESC_DHKEY_REPLY	0	Reply with a DH key
(111)	$GAPBondMgr_SetParameter*$	2	Setup pairing parameters

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Firmwa	re Collecti	on				

00000	00000	0000000	000000000000	00	00000	O
Firmwa	re Collecti	on				

2M Free Apps

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Firmwa	re Collecti	on				

	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Firmwa	re Collecti	on				

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Firmwa	re Categor	ization				

► Firmware categorization

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Firmwa	re Categor	ization				

- ► Firmware categorization
 - Descriptive APIs (e.g., SD_BLE_GAP_APPEARANCE_SET)

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Firmwa	re Categor	ization				

- ► Firmware categorization
 - Descriptive APIs (e.g., SD_BLE_GAP_APPEARANCE_SET)
 - Mobile app descriptions

00000	00000	000000	000000000000	00	00000	0
Firmwa	re Categor	ization				

► Firmware categorization

ъ

- Descriptive APIs (e.g., SD_BLE_GAP_APPEARANCE_SET)
- Mobile app descriptions

Category	# Firmware	# Device	Avg. Size (KB)
7	Nordic-based F	irmware	
Wearable	204	138	98.2
Others	76	22	223.5
Sensor	67	51	80.9
Tag (Tracker)	58	41	84.2
Robot	41	21	117.7
Medical Devices	41	21	138.6
	TI-based Firr	nware	-
Sensor	19	19	132.9
Smart Lock	2	2	46.3
Smart Toy	2	2	47.8
Medical Devices	1	1	70.2
Others	1	1	76.7
Total	793	538	102.7

Table: Top categories of firmware.

00000	00000	000000	000000000000	00	00000	0
Firmwa	re Categor	ization				

► Firmware categorization

Б

- Descriptive APIs (e.g., SD_BLE_GAP_APPEARANCE_SET)
- Mobile app descriptions

Firmware aggregation

- Aggregate different versions of firmware of the same device
- ► The 793 firmware represent 538 real devices

Category	# Firmware	# Device	Avg. Size (KB)
٦	Nordic-based F	irmware	
Wearable	204	138	98.2
Others	76	22	223.5
Sensor	67	51	80.9
Tag (Tracker)	58	41	84.2
Robot	41	21	117.7
Medical Devices	41	21	138.6
	TI-based Firr	nware	
Sensor	19	19	132.9
Smart Lock	2	2	46.3
Smart Toy	2	2	47.8
Medical Devices	1	1	70.2
Others	1	1	76.7
Total	793	538	102.7

Table: Top categories of firmware.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Fxperi	ment Resul	ts				

Identity Tracking Vulnerability Identification

Among the 538 devices, nearly all of them (98.1%) have configured random static addresses that do not change periodically.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Experin	nent Resul	ts				

Identity Tracking Vulnerability Identification

Among the 538 devices, nearly all of them (98.1%) have configured random static addresses that do not change periodically.

Firmware Name	Mobile App	Category	# Device
cogobeacon	com.aegismobility.guardian	Car Accessory	4
sd_bl	fr.solem.solemwf	Agricultural Equip.	2
LRFL_nRF52	fr.solem.solemwf	Agricultural Equip.	2
orb	one.shade.app	Smart Light	1
sd_bl	com.rainbird	Agricultural Equip.	1

Table: Firmware using private MAC address.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Experin	nent Resul	ts				

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any protection against active MITM attacks at the BLE link layer.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Experin	nent Resul	ts				

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any protection against active MITM attacks at the BLE link layer.

ltem	N	т	Total	%
# Total Device	513	25	538	100
# Device w/ active MITM vulnerability	384	1	385	71.5
# Device w/ Just Works pairing only	317	1	318	59.1
# Device w/ flawed Passkey implementation	37	0	37	6.9
# Device w/ flawed OOB implementation	30	0	30	5.6
# Device w/ secure pairing	6	24	30	3.8
# Device w/ correct Passkey implementation	3	24	27	3.4
# Device w/ correct OOB implementation	3	0	3	0.4

Table: Pairing configurations of devices (N:Nordic, T:TI).

00000	00000	0000000	0000000000	00	00000	0
Evnerin	nont Rocul	tc				

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to passive MITM attacks if there is no application-layer encryption.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Experin	nent Resul	ts				

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to passive MITM attacks if there is no application-layer encryption.

Firmware Name	Mobile App	Category	# Version
DogBodyBoard	com.wowwee.chip	Robot	16
BW_Pro	com.ecomm.smart_panel	Tag	1
$Smart_Handle$	com.exitec.smartlock	Smart Lock	1
Sma05	com.smalife.watch	Wearable	1
CPRmeter	com.laerdal.cprmeter2	Medical Device	4
WiJumpLE	com.wesssrl.wijumple	Sensor	1
nRF Beacon	no.nordicsemi.android.nrfbeacon	Beacon	1
Hoot Bank	com.qvivr.hoot	Debit Card	1

Table: Firmware that enforce LESC pairing.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 00000	References O
Attack	Case Stud	ies				

nRF52840 DK

Vulnerable BLE Devices

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Attack	Case Stud	ies				

Device Name	Category	Attacks		
	Category	A 1	A2	A 3
Nuband Activ+	Wearable	\checkmark		\checkmark
Kinsa Smart	Thermometer			\checkmark
Chipolo ONE	Tag	\checkmark		
SwitchBot Button Pusher	Smart Home		\checkmark	
XOSS Cycling Computer	Sensor	\checkmark		\checkmark

A1: User Tracking

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Attack	Case Stud	ies				

Device Name	Category	Attacks		
Bevice Munic	category	A 1	A2	A3
Nuband Activ+	Wearable	\checkmark		\checkmark
Kinsa Smart	Thermometer			\checkmark
Chipolo ONE	Tag	\checkmark		
SwitchBot Button Pusher	Smart Home		\checkmark	
XOSS Cycling Computer	Sensor	\checkmark		\checkmark

A2: Unauthorized Control

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	00000	O
Attack	Case Stud	ies				

Device Name	Category	Attacks		
	Category	A 1	A2	A3
Nuband Activ+	Wearable	\checkmark		\checkmark
Kinsa Smart	Thermometer			\checkmark
Chipolo ONE	Tag	\checkmark		
SwitchBot Button Pusher	Smart Home		\checkmark	
XOSS Cycling Computer	Sensor	\checkmark		\checkmark

A3: Sensitive Data Eavesdropping

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000		00000	O
Near Te						

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000		00000	O
Near Te	erm					

- OS Defense: OS-level defense to patch multiple security issues.
- Scanning Defense: Defending against malicious scanning.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000		00000	O
Near Te	erm					

- OS Defense: OS-level defense to patch multiple security issues.
- Scanning Defense: Defending against malicious scanning.
- Notification Fingerprinting: Exploring notification fingerprinting against BLE devices.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000	●○	00000	O
Near T	arm					

- OS Defense: OS-level defense to patch multiple security issues.
- Scanning Defense: Defending against malicious scanning.
- Notification Fingerprinting: Exploring notification fingerprinting against BLE devices.
- Connection Security: Exploring a defense for jamming attacks.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000		00000	O
Other D	irections					

- Other New Security Features. New security features (e.g., Cross-Transport Key Derivation) are keeping introducing, bringing new security attack surfaces.
- **Privacy-preserving Protocols**. BLE Privacy-preserving protocols such as identity resolution protocol may be vulnerable, and further understanding is needed.

Introduction 00000	Background	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work ○●	Takeaway 00000	References O
Other D	irections					

- Other New Security Features. New security features (e.g., Cross-Transport Key Derivation) are keeping introducing, bringing new security attack surfaces.
- Privacy-preserving Protocols. BLE Privacy-preserving protocols such as identity resolution protocol may be vulnerable, and further understanding is needed.

Recent Papers of Bluetooth Research with COVID-19

- Qingchuan Zhao, Haohuang Wen, Zhiqiang Lin, Dong Xuan, and Ness Shroff. On the Accuracy of Measured Distances of Bluetooth-based Contact Tracing (short paper). In SECURECOMM'20, October 2020.
- Haohuang Wen, Qingchuan Zhao, Zhiqiang Lin, Dong Xuan, and Ness Shroff. A Study of the Privacy of COVID-19 Contact Tracing Apps. In SECURECOMM'20, October 2020.

The Landscape of Bluetooth Security and Privacy

 Introduction
 Background
 BLEScope [ZWLZ19]
 FirmXRay [WLZ20]
 Future Work
 Takeaway
 References

 00000
 00000
 0000000000
 00
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

BLESCOPE [CCS 2019]

BLESCOPE

- Automatic UUID extraction and hierarchy reconstruction from mobile apps
- Identify app-level vulnerabilities by directly analyzing mobile apps

App Analysis and Field Test Result

- We analyzed 18,166 apps and discovered 168,093 UUIDs and 1,757 vulnerable apps
- ► 5,822 BLE devices were discovered in the field test, and 94.6% can be fingerprinted

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000	00000000000	00	00●00	O
FIRMX	Ray [CC9	5 2020]				

BLESCOPE

- A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
- ► A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.
- Vulnerability discovery and attack case studies.

The source code is available at https://github.com/OSUSecLab/FirmXRay.

Introduction	Background	BLESCOPE [ZWLZ19]	FirmXRay [WLZ20]	Future Work	Takeaway	References
00000	00000	0000000		00	000●0	O
Future	Directions					

- OS Defense: OS-level defense to may patch multiple security issues.
- Scanning Defense: Defending against malicious scanning.
- Notification Fingerprinting: Exploring notification fingerprinting against BLE devices.
- Connection Security: Exploring a defense for jamming attacks.

Introduction 00000	Background 00000	BLESCOPE [ZWLZ19] 0000000	FirmXRay [WLZ20]	Future Work	Takeaway 0000●	References O
Thank `	You					

Uncovering Vulnerabilities in Bluetooth Devices with Automated Binary Analysis

Zhiqiang Lin zlin@cse.ohio-state.edu

03/26/2021

References I

- Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B Rasmussen, *The {KNOB} is broken: Exploiting low entropy in the encryption key negotiation of bluetooth br/edr*, 28th {USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1047–1061.
- Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen, Bias: Bluetooth impersonation attacks, Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2020.

Bluetooth specification version 4.2, https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439, 2014.

- Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra, Uncovering privacy leakage in ble network traffic of wearable fitness trackers, Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications, ACM, 2016, pp. 99–104.
- Sławomir Jasek, Gattacking bluetooth smart devices, Black hat USA conference, 2016.

- Fawaz Kassem, Kyu-Han Kim, and Kang G Shin, *Protecting privacy of {BLE} device users*, 25th {USENIX} Security Symposium ({USENIX} Security 16), 2016, pp. 1205–1221.
- Muhammad Naveed, Xiao-yong Zhou, Soteris Demetriou, XiaoFeng Wang, and Carl A Gunter, Inside job: Understanding and mitigating the threat of external device mis-binding on android., NDSS, 2014.

Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick, Frankenstein: Advanced wireless fuzzing to exploit new bluetooth escalation targets, arXiv preprint arXiv:2006.09809 (2020).

Mike Ryan, Bluetooth: With low energy comes low security, 7th {USENIX} Workshop on Offensive Technologies ({WOOT} 13), 2013.

Pallavi Sivakumaran and Jorge Blasco, A study of the feasibility of co-located app attacks against {BLE} and a large-scale analysis of the current application-layer security landscape, 28th {USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1–18.

- Bluetooth SIG, Market update 2020, [EB/OL], 2020,
- https://www.bluetooth.com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf Accessed July, 2020.
- Maximilian Von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags, *Method confusion attack on bluetooth pairing*, Proceedings of the IEEE Symposium on Security and Privacy (S&P) (2021).
- Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang, *Firmxray: Detecting bluetooth link layer vulnerabilities from bare-metal firmware*, Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020, pp. 167–180.
 - Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Mathias Payer, and Dongyan Xu, Blueshield: Detecting spoofing attacks in bluetooth low energy networks.

- Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi, Mathias Payer, and Dongyan Xu, Blesa: Spoofing attacks against reconnections in bluetooth low energy.

Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and Kehuan Zhang, Badbluetooth: Breaking android security mechanisms via malicious bluetooth peripherals., NDSS, 2019.

- Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu, *Breaking secure pairing of bluetooth low energy using downgrade attacks*, 28th {USENIX} Security Symposium ({USENIX} Security 20), 2020.
- Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang, Automatic fingerprinting of vulnerable ble iot devices with static uuids from mobile apps, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 1469–1483.