
THE OHIO STATE UNIVERSITY

COMPUTER SECURITY LABORATORY

some text
Unpacking the Threats of All-in-One

Mobile Super Apps

Zhiqiang Lin
Distinguished Professor of Engineering

zlin@cse.ohio-state.edu

May 8th, 2024

zlin@cse.ohio-state.edu

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References0/28

Acknowledgement

Yue Zhang Bayan Turkistani

Yuqing Yang

Chaoshun Zuo

Zhiqiang Lin

Chao Wang Ronny Ko

1 A Measurement Study of Wechat Mini-Apps. In SIGMETRICS
2021 [ZTY+21]

2 Cross Miniapp Request Forgery: Root Causes, Attacks, and
Vulnerability Detection. In CCS 2022 [YZL22]

3 TAINTMINI: Detecting Flow of Sensitive Data in
Mini-Programs with Static Taint Analysis. In ICSE 2023
[WKZ+]

4 One Size Does Not Fit All: Uncovering And Exploiting Cross
Platform Discrepant APIs in Wechat. In USENIX Security 2023
[WZL23a]

5 Don’t Leak Your Keys: Understanding, Measuring, and
Exploiting the AppSecret Leaks in Mini-Programs. In CCS 2023
[ZYL23]

6 Uncovering and Exploiting Hidden APIs in Mobile Super Apps.
In CCS 2023 [WZL23b]

7 Root Free Attacks: Exploiting Mobile Platform’s Super Apps
From Desktop. In ASIACCS 2024 [WZL24]

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References1/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Super App Category Monthly Users Country Busi
ne

ss

Edu
ca

tio
n

Com
mun

ica
tio

n

Fina
nc

e

Fo
od

Deli
ver

y

Gam
es

Lif
est

yle

Ride
-ha

ilin
g

Sho
pp

ing

Soc
ial

And
roi

d
iO

S
W

ind
ow

s

And
roi

d
iO

S
W

ind
ow

s

Services Platform Miniapp

WeChat Social 1,200 million + China 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Tiktok Social 1,000 million + China 7 3 3 3 7 3 3 7 3 3 3 3 3 3 3 7
Alipay Finance 730 million + China 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7
Snapchat Social 347 million + U.S. 7 7 3 7 7 3 3 7 7 3 3 3 7 3 3 7
WeCom Business 180 million + China 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Paytm Finance 150 million + India 3 7 7 3 7 7 7 7 7 7 3 3 7 3 3 7
Go-Jek Finance 100 million + Indonesia 3 7 7 3 3 3 3 3 3 7 3 3 7 3 3 7
Zalo Social 52 million + Vietnam 3 7 3 7 7 3 7 7 3 3 3 3 3 3 3 7
Kakao Social 45 million + South Korea 7 7 3 7 3 7 3 7 3 3 3 3 3 7 7 7
Grab Delivery 25 million + Singapore 7 7 7 3 3 7 3 3 3 7 3 3 7 3 3 7

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References2/28

What is WeChat?

”It’s sort of like Twitter, plus PayPal, plus
a whole bunch of things all rolled into one,
with a great interface.”

— Elon Musk

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References3/28

Mobile Superapps in a Nutshell

Local
API

Cloud
API

Location

Bluetooth

Audio

Camera

(S1) Permission Mechanism

Address

Contacts

Photo

(S2) Sandboxing
Files

JS Code

Execution

Environment

(S4) Hot Update Restriction

(S5) API Restriction
APIs

Mobile OS Resources

Superapp Resources

External Web

Sites

(S7) Secure Communication

(S3) DOM Tree Isolation

(S6) Domain Allowlisting

Internal Cloud

Resources

(S8) Token Based Services Access

(S9) Role-based Access Control

(S10) Data Encryption

Phone number

User info

Werun data

Share info

(S11) Code VettingMiniapp

Packages

(S12) Account Protection
User Account

(S13) Third Party Integration

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T10) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T10) Single Point Failure

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

APIs (S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

(S13) Third Party Integration

User Account (S12) Account Protection

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T1) Data Leakage via Phishing Attack

(T4) Privileged Access via Cross-Miniapp-Channel

(T12) Vetting bypass via Hot Updating

Operating System

Host app

Developer

Developer Tool

Third-party

Server

Cloud API

Miniapp Market

User Database

Super App CloudNetworking

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

User Account

(T1) Data Leakage via Phishing Attack

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

Super App Frontend
Resources or Services

Super App Backend
Resources or Services

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g

 B
y

p
a

ssin
g

(S13) Third Party Integration

(S12) Account Protection

①
APIs

②

③

④

⑤

⑥

⑦

⑧

⑨

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution
Environment

(S4) Cross-miniapp Restriction

(S5) Designated Distribution Channel

External Web
Domain

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Cloud
Database

Phone number

User Info

Werun data

Shareinfo

(S9) Data Encryption

Miniapp Packages (S12) Code Vetting

User Account

(T1) Flawed Permission

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Cross-platform Vulnerability

(T3) Privileged Access via Hidden APIs

Su
p

e
r

A
p

p
 F

ro
n

te
n

d

R
e

so
u

rc
e

s
o

r
Se

rv
ic

e
s

Su
p

e
r

A
p

p
 B

ac
ke

n
d

R

e
so

u
rc

e
s

o
r

Se
rv

ic
e

s

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g

 B
y

p
a

ssin
g

(S13) Account Protection

(S8) Role-based Access Control

(S10) Token Based Access Control

(S11) Token Based Isolation

A
u

th
e

n
ticity

A
vailab

ility

Internal Cloud
Resources

(S1) Permission Mechanism

C
o

n
fid

e
n

tiality
In

te
grity

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References4/28

The Benefits a Superapp Can Offer

Hosts Mobile OS
(Native Apps)

Web Browsers
(Web Apps)

Super Apps
(Miniapps)

Example Platform Android Chrome WeChat

System Resources? ○ ○
Super-app Services? ○␣ ○
User Data/States? ○ ○
Account? ○ ○ ○
App Packages? ○ ○␣ ○
Cloud Services? ○ ○

API Support? Rich Poor Rich
Compatible with Platforms? ○␣ ○ ○
Backend? ○
Centralized Vetting? ○ ○␣ ○

Install-free? ○␣ ○ ○
Market? ○ ○␣ ○
Storage Consumption? High Low Low
Update? Client-based Client-based Server-based
Performance? High Browser-specific Super-app-specific
Offline Loading? High Low Median
Register and Login? ○ ○ ○␣

“○” represents full support; “” represents partial support; “○␣” represents no support.

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References5/28

The Taxonomy of Super Apps
H

o
st

S
er

v
ic

e
O

S
A

p
p

 Integrated WebView WebView-based Miniapp Cutomized Engine-based

Miniapp

Operating System Operating SystemOperating System

Native Application

Web Application

HostApp

WebView w/ JS-BridgeWebView

MiniApp

HostApp

Page Renderer JS Executor

MiniApp

A B C

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References5/28

The Taxonomy of Super Apps
H

o
st

S
er

v
ic

e
O

S
A

p
p

 Integrated WebView WebView-based Miniapp Cutomized Engine-based

Miniapp

Operating System Operating SystemOperating System

Native Application

Web Application

HostApp

WebView w/ JS-BridgeWebView

MiniApp

HostApp

Page Renderer JS Executor

MiniApp

A B C

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References5/28

The Taxonomy of Super Apps
H

o
st

S
er

v
ic

e
O

S
A

p
p

 Integrated WebView WebView-based Miniapp Cutomized Engine-based

Miniapp

Operating System Operating SystemOperating System

Native Application

Web Application

HostApp

WebView w/ JS-BridgeWebView

MiniApp

HostApp

Page Renderer JS Executor

MiniApp

A B C

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References6/28

Evolution of the Superapps

2016

2009

Chrome

Firefox

2017

2018

2019

Opera

2004

e

2021

2020

Lynx Nebula

WeChat

WeCom

QQ

IXigua

AliPay

Baidu

MeiTuan

KuaiShou

2022

X5

Edge

A B C

H
o

st
S

er
v

ic
e

O
S

A
p

p

 Integrated WebView

Operating System

Native Application

Web Application

WebView

A

 Cutomized Engine-based

Miniapp

Operating System

HostApp

Page Renderer JS Executor

MiniApp

B

 WebView-based Miniapp

Operating System

HostApp

WebView w/ JS-Bridge

MiniApp

C

H
o

st
S

er
v

ic
e

O
S

A
p

p
H

o
st

S
er

v
ic

e
O

S
A

p
p

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References7/28

Security Threats

Threats from Vulnerability Exploitation
1 Vulnerabilities in Host Apps

(T1) Platform Discrepancies [WZL23a]
(T2) Privileged APIs [WZL23b]
(T3) Identity Confusion [ZZL+22]

2 Vulnerabilities in Miniapps
(T4) Cross Miniapp Request Forgery [YZL22]
(T5) AppSecret Key Leakage [ZYL23]
(T6) Missing Signature Verification [ZZW23]

Threats from Malware Attacks
1 API Misuse/Abuse (Payload)

(T7) Collecting User Privacy
(T8) Service Abusing
(T9) Grayware

2 Bypassing Vetting
(T10) Code Vetting Bypassing
(T11) Content Vetting Bypassing
(T12) Reporting Bypassing

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References8/28

(T1) Exploiting Cross-platform Discrepancies [WZL23a]

Local
API

Cloud
API

Location

Bluetooth

Audio

Camera

(S1) Permission Mechanism

Address

Contacts

Photo

(S2) Sandboxing
Files

JS Code

Execution

Environment

(S4) Hot Update Restriction

(S5) API Restriction
APIs

Mobile OS Resources

Superapp Resources

External Web

Sites

(S7) Secure Communication

(S3) DOM Tree Isolation

(S6) Domain Allowlisting

Internal Cloud

Resources

(S8) Token Based Services Access

(S9) Role-based Access Control

(S10) Data Encryption

Phone number

User info

Werun data

Share info

(S11) Code VettingMiniapp

Packages

(S12) Account Protection
User Account

(S13) Third Party Integration

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T10) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T10) Single Point Failure

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

APIs (S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

(S13) Third Party Integration

User Account (S12) Account Protection

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T1) Data Leakage via Phishing Attack

(T4) Privileged Access via Cross-Miniapp-Channel

(T12) Vetting bypass via Hot Updating

Operating System

Host app

Developer

Developer Tool

Third-party

Server

Cloud API

Miniapp Market

User Database

Super App CloudNetworking

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

User Account

(T1) Data Leakage via Phishing Attack

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

Super App Frontend
Resources or Services

Super App Backend
Resources or Services

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g
 B

y
p

a
ssin

g

(S13) Third Party Integration

(S12) Account Protection

①
APIs

②

③

④

⑤

⑥

⑦

⑧

⑨

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution
Environment

(S4) Cross-miniapp Restriction

(S5) Designated Distribution Channel

External Web
Domain

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Cloud
Database

Phone number

User Info

Werun data

Shareinfo

(S9) Data Encryption

Miniapp Packages (S12) Code Vetting

User Account

(T1) Flawed Permission

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Cross-platform Vulnerability

(T3) Privileged Access via Hidden APIs

Su
p

e
r

A
p

p
 F

ro
n

te
n

d
 R

e
so

u
rc

e
s

o
r

Se
rv

ic
e

s
Su

p
e

r
A

p
p

 B
ac

ke
n

d
 R

e
so

u
rc

e
s

o
r

Se
rv

ic
e

s

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g
 B

y
p

a
ssin

g

(S13) Account Protection

(S8) Role-based Access Control

(S10) Token Based Access Control

(S11) Token Based Isolation

A
va

ila
b

ili
ty

Internal Cloud
Resources

(S1) Permission Mechanism

C
o

n
fi

d
e

n
ti

al
it

y
In

te
gr

it
y

A
u

th
e

n
ti

ci
ty

C
o

n
tacts

A
d

d
re

ss

Lo
catio

n

B
lu

e
to

o
th

A
u

d
io

C
am

e
ra

P
h

o
to

s

File
s

(S2
) San

d
b

o
xin

g

(S3
) A

P
I R

e
strictio

n

JS C
o

d
e

 Exe
cu

tio
n

En

viro
n

m
e

n
t

(S4
) C

ro
ss-m

in
iap

p
 R

e
strictio

n

(S
5
) D

esig
n

a
ted

 D
istrib

u
tio

n
 C

h
a

n
n

el

Exte
rn

al W
e

b

D
o

m
ain

(S
6
) D

o
m

a
in

 A
llo

w
listin

g

(S
7
) S

e
cu

re C
o

m
m

u
n

ica
tio

n

In
te

rn
al C

lo
u

d

D
atab

ase

P
h

o
n

e
 n

u
m

b
e

r

U
se

r In
fo

W
e

ru
n

 d
ata

Sh
are

in
fo

(S
9
) D

a
ta

 E
n

c
ry

p
tio

n

M
in

iap
p

 P
ackage

s
(S

1
2

) C
o

d
e V

ettin
g

U
se

r A
cco

u
n

t

Super App Frontend Resources or ServicesSuper App Backend Resources or Services

(S
1
3

) A
cco

u
n

t P
r
o
tectio

n

(S
8
) R

o
le

-b
a

sed
 A

ccess C
o
n

tro
l

(S1
0

) To
ke

n
 B

ase
d

 A
cce

ss C
o

n
tro

l

(S1
1

) To
ke

n
 B

ase
d

 Iso
latio

n

Availability

In
te

rn
al C

lo
u

d

R
e

so
u

rce
s

ConfidentialityIntegrityAuthenticity

(S1
) P

e
rm

issio
n

 M
e

ch
an

ism

Local
API

Cloud
API

Operating System

Host app

Developer

Developer Tool

Third-party

Server

Cloud API

Miniapp Market

User Database

Super App CloudNetworking

①
APIs

②

③

④

⑤

⑥

⑦

⑧

⑨

Host app

...

Miniapps

Network Downloading

User Importing

Official Market

P
o

ss
ib

le
 C

h
an

n
e

ls

IDE preview

Device preview

Developing,
Previewing

Permission
Management

Vetting

Distribution

Uploading

Version Update

Alpha Version

Beta Version

Final Version

Developer,
Tester

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References8/28

(T1) Exploiting Cross-platform Discrepancies [WZL23a]

API-Doc

No Parameters

Basic-Type Parameters

Object-Type Parameters

API Existence Discrepancies

API Output Discrepancies(I) API Parameter
Resolution

(II) API Dependencies
Resolution

Debug Protocol

Test Case Generator Code Executor Discrepancies Analyzer

API Permission Discrepancies

Results

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References8/28

(T1) Exploiting Cross-platform Discrepancies [WZL23a]

APIs Permission Scope
Mobile PC

A P A P A P
getLocation

userLocation
3 3 3 3 3 7

chooseLocation 3 3 3 3 3 7
startLocationUpdate 3 3 3 3 3 7
SLUBackground* userLocationBackground 3 3 3 3 7 -
startRecord

record
3 3 3 3 3 7

joinVoIPChat 3 3 3 3 7 -
RecorderManager.start 3 3 3 3 3 7
createCameraContext camera 3 3 3 3 3 7
createVKSession 3 3 3 3 7 -
openBluetoothAdapter bluetooth 7 - 3 3 7 -
BLEPeripheralServer 3 3 3 3 7 -
saveImageToPhotosAlbum writePhotosAlbum 3 3 3 3 3 7
saveVideoToPhotosAlbum 3 3 3 3 3 7
addPhoneContact addPhoneContact 3 3 3 3 7 -
addPhoneRepeatCalendar addPhoneCalendar 3 3 3 3 7 -
addPhoneCalendar 3 3 3 3 7 -
getWeRunData werun 3 3 3 3 7 -

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References8/28

(T1) Exploiting Cross-platform Discrepancies [WZL23a]

APIs Mobile Desktop

Name Category Type Precision A S U A S U A S U
createAudioContext Media 7 3 7 3 3 7 3 3 7 3

createBufferURL Storage 7 3 7 3 3 7 3 3 7 3

createCameraContext Media 7 3 7 3 3 7 3 3 7 3

createCanvasContext Canvas 7 3 7 3 3 7 3 3 7 3

createIntersectionObserver WXML 7 3 7 3 3 7 3 3 7 3

createLivePusherContext Media 7 3 7 3 3 7 3 3 7 3

createOffscreenCanvas Canvas 7 3 7 3 3 7 3 3 7 3

createSelectorQuery WXML 7 3 7 3 3 7 3 3 7 3

createWebAudioContext Media 7 3 7 3 3 7 3 3 7 3

getAccountInfoSync OpenAPI 7 3 3 7 3 3 3 3 3 7

getAppAuthorizeSetting Base 7 3 3 3 3 3 3 3 3 7

getAppBaseInfo Base 7 3 3 3 3 3 3 3 3 3

getDeviceInfo Base 7 3 3 3 3 3 3 3 3 3

getLocalIPAddress Device 7 3 3 3 3 3 7 3 3 7

getMenuButtonBoundingClientRect UI 7 3 3 7 3 3 3 3 3 7

getPerformance Base 7 3 3 3 3 3 7 3 3 7

getScreenBrightness Device 3 3 3 3 3 3 7 3 3 3

getSystemInfo Base 3 3 3 3 3 3 3 3 3 3

getSystemInfoAsync Base 3 3 3 3 3 3 3 3 3 3

getSystemInfoSync Base 3 3 3 3 3 3 3 3 3 3

getSystemSetting Base 7 3 3 7 3 3 3 3 3 7

getWindowInfo Base 7 3 3 7 3 3 3 3 3 3

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References9/28

(T2) Exploiting Hidden/Privileged APIs [WZL23b]

Attacks Caused by Hidden APIs

1 Arbitrary Web Page Access
2 Malware Download and Installation
3 Screenshot-based Information Theft
4 Phone Number Theft
5 Contact Information Theft

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int cId){

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int cId){

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int cId){

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme s, CallbackHandler cb, SwanApp a){

23 // some other logic

24 }

25 }

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation('wgs84')

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References9/28

(T2) Exploiting Hidden/Privileged APIs [WZL23b]

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer
Miniapp

❶ Invoking

JavaScript API

❸ Passing

Invocation Request

Host App

❹ Binder IPC

❺ Returning Results
❻ Returning Results

❼ Returning Results

❽ Returning Results

❷ Passing Invocation

Request

JavaScript

Framework Layer

Customized V8

Layer

Service

Abstraction Layer

Malicious

Miniapp
Host App

openUrl

openUrl

openUrl

private_openUrl

private_openUrl

private_openUrl

getLocation

getLocation
getLocation

private_openUrl

getLocation

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

wx.getLocation({type:'wgs84'})

 Object(WeixinJSBridge.invokeMethod)("getLocation", 'wgs84', Callback{})

function a("getLocation", 'wgs84', callbackId)

 NativeGlobal.invokeHandler("getLocation", 'wgs84',callbackId)

1// Implementation of Docuemented API getLocation

2 package com.tencent.mm.plugin.appbrand.jsapi.m;

3 public class x extends a {

4 public static final int CTRL_INDEX = 17;

5 public static final String NAME = "getLocation";

6

7 @Override

8 public final void b(IAppBrandComponent env, JSONObject data,int callbackId) {

9 // some other logic

10 env.doCallback(callbackId, env.Map2JSON(result));

11 }

12 }

13

14 // Implementation of Undocumented API openUrl

15 package com.tencent.mm.plugin.appbrand.jsapi.n;

16 public class y extends a {

17 public static final int CTRL_INDEX = 201;

18 public static final String NAME = "openUrl";

19

20 @Override

21 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

22 // some other logic

23 env.doCallback(callbackId, env.Map2JSON(result));

24 }

25 }

26

27 // Implementation of Undocumented API private_openUrl

28 package com.tencent.mm.plugin.appbrand.jsapi.n;

29 public class z extends a {

30 public static final int CTRL_INDEX = 406;

31 public static final String NAME = "private_openUrl";

32

33 @Override

34 public final void b(IAppBrandComponent env,JSONObject data, int callbackId) {

35 // some other logic

36 env.doCallback(callbackId,env.Map2JSON(result));

37 }

38 }

1 // Docuemented API Implementation of Baidu

2 package com.baidu.swan.apps.scheme.actions.f;

3 public class a extends aa {

4 public a (e context) {

5 super(context, "/swanAPI/getLocation");

6 }

7

8 @Override

9 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

10 // some other logic

11 }

12 }

13

14 // Unocuemented API Implementation of Baidu

15 package com.baidu.swan.apps.impl.account.a;

16 public class f extends aa {

17 public f (e context) {

18 super(context, "/swanAPI/getBDUSS");

19 }

20

21 @Override

22 public boolean a (Context c, Scheme scheme, CallbackHandler cb, SwanApp app){

23 // some other logic

24 }

25 }

1 wx.getLocation = function (arg) {

2 var params = 0 < arguments.length && void 0 !== arg ? arg : {};

3 Object(WeixinJSBridge.invokeMethod)("getLocation", params, {

4 beforeSuccess: function(e) {

5 // Code Omitted //

6 }

7 })

8 }

1 // Implementation of invokeHandler in NativeGlobal JavaScript Object (C++)

2 int magicbrush::BindingNativeGlobal::BindTo(v8::Object *a1, v8::Isolate *a2){

3 /* Code Omitted */

4

5 v13 = 0;

6 v7 = (v8::Value *)mm::JSGet<v8::Local<v8::Value>>(a1, v6, "NativeGlobal", &v12);

7 if (!v7 || (v9 = (int)v7, !v8::Value::IsObject(v7)))

8 v9 = v8::Object::New(a1, v8);

9 v13 = v9;

10

11 /* Code Omitted */

12

13 mm::JSSetWithData((int)a1,

14 v13,

15 (int)"invokeHandler",

16 (int)magicbrush::nativeglobal::invokeHandler,

17 a2);

18 mm::JSSet<v8::Local<v8::Object>>(a1, *a3, "NativeGlobal", v13);

19 return v13;

20 }

21

22 int magicbrush::nativeglobal::invokeHandler(v8::Isolate *a1, _DWORD *a2) {

23 /* Code Omitted */

24

25 mm::JSConvert<std::string, void>::fromV8(api_name, a1, v6);

26 mm::JSConvert<char16_t const*, void>::fromV8(api_param, a1, v6);

27 mm::JSConvert<int, void>::fromV8(callback_id, a1, v6);

28 Java_com_tencent_magicbrush_MBRuntime_nativeInvokeHandler(

29 api_name,

30 api_param,

31 callback_id

32)

33

34 /* Code Omitted */

35 }

1 // Implementation of invoke handler in Java framework

2 package com.tencent.magicbrush;

3 public abstract class MBRuntime {

4 protected String nativeInvokeHandler(String apiName, String apiParam, int id) {

5 if (this.nativeHandler != null) {

6 try {

7 return this.nativeHandler.invoke(apiName, apiParam, id);

8 } catch (Throwable e) {

9 Logger.printStackTrace("MBRuntime", e, "crash when invoke jsapi!");

10 throw e;

11 }

12 }

13 Logger.error("MBRuntime", "no native invoke handler");

14 return "";

15 }

16 }

1 WeixinJSBridge = function(global) {

2 var NativeGlobal = global.NativeGlobal;

3 var globalCount = 0;

4

5 function invokeMethod(apiName, params, callbackHandler) {

6 params = WeixinNativeBuffer.pack(params);

7 var filteredParams = paramFilter(params || {}),

8 callbackId = ++globalCount;

9 callbackQueue[callbackId] = callbackHandler,

10 a(apiName, params, callbackId) {

11 callbackId = NativeGlobal.invokeHandler(apiName, params,

12 callbackId);

13 invokeCallbackHandler(callbackId, callbackHandler)

14 }(apiName, filteredParams, callbackId)

15 }

16 return this;

17 }(global);

JavaScript Framework Layer Customized V8 Layer

Service Abstraction Layer

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References9/28

(T2) Exploiting Hidden/Privileged APIs [WZL23b]

Super Apps

Static API Recognition (§ 5.1)

Decompiled Code

JavaScript

Runtime
JavaScript

Runtime

API

Probing

(I) Automatic

Invariants

Extraction

(III) Dynamic API Probing for

API Category Classification

Testing

Cases

Testing

Cases
Testing Cases

Generator

Decompiler

(II) Undocumented

API Recognition

(II) Forward Slicing for API

Invocation Identification

Forward

Slicing

G PE

Dynamic API Classification (§ 5.2)

Results

(I) Test Case

Generation

Public APIs

Undocumented

Checked API

Undocumented

Unchecked API

Undocumented

APIs

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References9/28

(T2) Exploiting Hidden/Privileged APIs [WZL23b]
Available APIs WeChat WeCom Baidu TikTok QQ

D % UU % UC % D % UU % UC % D % UU % UC % D % UU % UC % D % UU % UC %

Base

Basic 5 71.4 2 28.6 - 0.0 6 66.7 3 33.3 - 0.0 8 72.7 2 18.2 1 9.1 7 63.6 4 36.4 - 0.0 3 100.0 - 0.0 - 0.0
App 13 39.4 14 42.4 6 18.2 13 37.1 16 45.7 6 17.1 8 42.1 10 52.6 1 5.3 6 50.0 6 50.0 - 0.0 9 34.6 17 65.4 - 0.0
Debug 15 88.2 2 11.8 - 0.0 15 88.2 2 11.8 - 0.0 1 3.3 28 93.3 1 3.3 - 0.0 - 0.0 - 0.0 20 100.0 - 0.0 - 0.0
Misc 10 58.8 7 41.2 - 0.0 10 55.6 8 44.4 - 0.0 9 100.0 - 0.0 - 0.0 10 52.6 9 47.4 - 0.0 9 100.0 - 0.0 - 0.0

UI

Interaction 6 46.2 7 53.8 - 0.0 6 46.2 7 53.8 - 0.0 7 41.2 10 58.8 - 0.0 9 81.8 2 18.2 - 0.0 6 40.0 9 60.0 - 0.0
Navigation 4 44.4 5 55.6 - 0.0 4 40.0 6 60.0 - 0.0 4 100.0 - 0.0 - 0.0 5 100.0 - 0.0 - 0.0 4 33.3 8 66.7 - 0.0
Animation 32 100.0 - 0.0 - 0.0 32 100.0 - 0.0 - 0.0 21 95.5 1 4.5 - 0.0 1 100.0 - 0.0 - 0.0 31 100.0 - 0.0 - 0.0
WebView - 0.0 22 95.7 1 4.3 - 0.0 24 96.0 1 4.0 - 0.0 3 75.0 1 25.0 - 0.0 3 100.0 - 0.0 - 0.0 16 100.0 - 0.0
Misc 20 27.0 54 73.0 - 0.0 20 25.6 58 74.4 - 0.0 37 77.1 11 22.9 - 0.0 14 73.7 5 26.3 - 0.0 18 42.9 24 57.1 - 0.0

Network

Request 5 55.6 4 44.4 - 0.0 5 55.6 4 44.4 - 0.0 2 66.7 1 33.3 - 0.0 6 60.0 4 40.0 - 0.0 4 66.7 2 33.3 - 0.0
Download 7 24.1 21 72.4 1 3.4 7 23.3 22 73.3 1 3.3 11 100.0 - 0.0 - 0.0 - 0.0 4 100.0 - 0.0 6 60.0 4 40.0 - 0.0
Upload 7 50.0 5 35.7 2 14.3 7 46.7 6 40.0 2 13.3 6 100.0 - 0.0 - 0.0 - 0.0 4 100.0 - 0.0 6 75.0 2 25.0 - 0.0
Websocket 14 93.3 1 6.7 - 0.0 14 93.3 1 6.7 - 0.0 13 100.0 - 0.0 - 0.0 7 77.8 2 22.2 - 0.0 13 86.7 2 13.3 - 0.0
Misc 23 88.5 3 11.5 - 0.0 23 85.2 4 14.8 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 10 55.6 8 44.4 - 0.0

Storage 10 66.7 5 33.3 - 0.0 10 66.7 5 33.3 - 0.0 10 100.0 - 0.0 - 0.0 10 90.9 1 9.1 - 0.0 10 83.3 2 16.7 - 0.0

Media

Map 8 14.3 48 85.7 - 0.0 8 14.3 48 85.7 - 0.0 7 100.0 - 0.0 - 0.0 6 100.0 - 0.0 - 0.0 9 36.0 16 64.0 - 0.0
Image 6 60.0 4 40.0 - 0.0 6 60.0 4 40.0 - 0.0 6 85.7 1 14.3 - 0.0 5 83.3 1 16.7 - 0.0 6 60.0 4 40.0 - 0.0
Video 14 35.0 26 65.0 - 0.0 14 31.8 30 68.2 - 0.0 19 95.0 1 5.0 - 0.0 8 80.0 2 20.0 - 0.0 14 63.6 8 36.4 - 0.0
Audio 64 84.2 9 11.8 3 3.9 64 79.0 14 17.3 3 3.7 44 100.0 - 0.0 - 0.0 44 81.5 10 18.5 - 0.0 61 85.9 10 14.1 - 0.0
Live 26 46.4 30 53.6 - 0.0 26 39.4 40 60.6 - 0.0 8 100.0 - 0.0 - 0.0 19 100.0 - 0.0 - 0.0 23 57.5 17 42.5 - 0.0
Recorder 16 84.2 3 15.8 - 0.0 16 84.2 3 15.8 - 0.0 12 100.0 - 0.0 - 0.0 11 91.7 1 8.3 - 0.0 15 88.2 2 11.8 - 0.0
Camera 9 60.0 6 40.0 - 0.0 9 52.9 8 47.1 - 0.0 9 50.0 9 50.0 - 0.0 20 95.2 1 4.8 - 0.0 4 36.4 7 63.6 - 0.0
Misc 12 75.0 3 18.8 1 6.3 12 75.0 3 18.8 1 6.3 18 100.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 6 100.0 - 0.0 - 0.0

Location 3 42.9 4 57.1 - 0.0 3 42.9 4 57.1 - 0.0 7 100.0 - 0.0 - 0.0 3 100.0 - 0.0 - 0.0 3 100.0 - 0.0 - 0.0
Share 4 33.3 7 58.3 1 8.3 4 16.7 19 79.2 1 4.2 3 100.0 - 0.0 - 0.0 5 71.4 2 28.6 - 0.0 5 35.7 9 64.3 - 0.0

Canvas 60 74.1 21 25.9 - 0.0 60 74.1 21 25.9 - 0.0 46 92.0 4 8.0 - 0.0 49 98.0 1 2.0 - 0.0 48 92.3 4 7.7 - 0.0
File 39 97.5 1 2.5 - 0.0 39 92.9 3 7.1 - 0.0 35 100.0 - 0.0 - 0.0 34 97.1 1 2.9 - 0.0 37 97.4 1 2.6 - 0.0

Open API

Login 2 100.0 - 0.0 - 0.0 5 83.3 1 16.7 - 0.0 3 42.9 1 14.3 3 42.9 2 100.0 - 0.0 - 0.0 2 100.0 - 0.0 - 0.0
Navigate 2 33.3 2 33.3 2 33.3 2 22.2 5 55.6 2 22.2 3 100.0 - 0.0 - 0.0 7 100.0 - 0.0 - 0.0 2 50.0 1 25.0 1 25.0
User Info 2 16.7 7 58.3 3 25.0 5 23.8 13 61.9 3 14.3 1 10.0 6 60.0 3 30.0 2 13.3 13 86.7 - 0.0 2 28.6 4 57.1 1 14.3
Payment 1 3.4 13 44.8 15 51.7 1 3.2 15 48.4 15 48.4 1 50.0 - 0.0 1 50.0 1 33.3 1 33.3 1 33.3 2 22.2 7 77.8 - 0.0
Bio-Auth 3 27.3 3 27.3 5 45.5 3 21.4 6 42.9 5 35.7 - 0.0 - 0.0 - 0.0 - 0.0 1 100.0 - 0.0 3 100.0 - 0.0 - 0.0
Enterprise - 0.0 1 100.0 - 0.0 5 17.9 6 21.4 17 60.7 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
Misc 14 19.4 42 58.3 16 22.2 14 16.7 54 64.3 16 19.0 16 57.1 2 7.1 10 35.7 25 55.6 20 44.4 - 0.0 12 13.0 78 84.8 2 2.2

Device

Wi-Fi 9 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0 10 100.0 - 0.0 - 0.0 4 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0
Bluetooth 18 60.0 11 36.7 1 3.3 18 58.1 12 38.7 1 3.2 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 18 100.0 - 0.0 - 0.0
Contact 1 10.0 5 50.0 4 40.0 1 9.1 6 54.5 4 36.4 1 33.3 2 66.7 - 0.0 - 0.0 - 0.0 - 0.0 1 25.0 2 50.0 1 25.0
NFC 5 26.3 14 73.7 - 0.0 9 39.1 14 60.9 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 5 100.0 - 0.0 - 0.0
Screen 4 36.4 6 54.5 1 9.1 4 36.4 6 54.5 1 9.1 3 100.0 - 0.0 - 0.0 9 100.0 - 0.0 - 0.0 4 100.0 - 0.0 - 0.0
Phone 1 4.3 21 91.3 1 4.3 1 4.3 21 91.3 1 4.3 1 100.0 - 0.0 - 0.0 1 100.0 - 0.0 - 0.0 1 50.0 1 50.0 - 0.0
Misc 28 63.6 15 34.1 1 2.3 28 59.6 18 38.3 1 2.1 21 80.8 5 19.2 - 0.0 16 69.6 7 30.4 - 0.0 28 82.4 6 17.6 - 0.0

AI CV 19 100.0 - 0.0 - 0.0 19 100.0 - 0.0 - 0.0 18 90.0 2 10.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0
Misc - 0.0 - 0.0 - 0.0 - 0.0 1 100.0 - 0.0 11 100.0 - 0.0 - 0.0 7 100.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0

AD 19 95.0 1 5.0 - 0.0 19 95.0 1 5.0 - 0.0 9 64.3 4 28.6 1 7.1 13 61.9 8 38.1 - 0.0 3 25.0 9 75.0 - 0.0
Uncategorized 30 38.5 47 60.3 1 1.3 30 36.6 51 62.2 1 1.2 15 53.6 10 35.7 3 10.7 17 68.0 7 28.0 1 4.0 34 68.0 15 30.0 1 2.0

All 590 51.0 502 43.4 65 5.6 606 47.3 593 46.3 82 6.4 464 77.1 113 18.8 25 4.2 383 75.8 120 23.8 2 0.4 506 62.7 295 36.6 6 0.7

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References10/28

(T3) Exploiting Identity Confusion Vulnerability [ZZL+22]

Source: https://www.usenix.org/system/files/sec22-zhang-lei.pdf

https://www.usenix.org/system/files/sec22-zhang-lei.pdf

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References11/28

(T4) Cross Miniapp Request Forgery (CMRF) [YZL22]

Payment
Miniapp

Shopping
Miniapp

Attack
Miniapp

pay_failX
pay_success

Not VettedVetted

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)Offline

 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Attacker Host App

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ saveConfig(Msg)

 ❸ LaunchReceiver(appID)

Offline

❹ loadConfig(Msg)

Offline

Msg

 ❻ navigateBackMiniprogram(Msg)

Mini-app (Victim)

 ❼ saveConfig(Msg)

 ❽ LaunchReceiver(appID)

❾ loadConfig(Msg)

 onShow

 onShow

Mini-app (Sender)

WeChat Front-endFront-endBack-end Back-end

Key Key

 ❷ getKey(appIDr)

❸ C = Enc(Key,Req)

❶ Key Negotiation

❾ Req = Dec(Key,C)

 ❽ Key = getKey(appIDs)

❺ saveConfig(C)

 ❻ loadConfig(C)

❹ Send(C)

 ❼ Send(C)

appIDrappIDs

Mini-app’s Back-end
(Victim)

Msg
 ❺ Send(Msg)

Mini-app’s Back-end
(Sender)

Msg

Mini-app’s Back-end
(Receiver)

WeChat Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

Mini-app (Receiver)

Mini-app’s Back-end
(Sender)

Mini-app’s Back-end
(Receiver)

Mini-app (Sender)

Host App

❽ Verify(appID)

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)

Offline
 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Mini-app (Sender)Mini-app’s Back-end
(Sender)

Msg

Mini-app’s Back-end
(Receiver)

❽ Verify(appID)

Optional Optional

Back-end

 ❻ callBack

Sender Receiver

I

II

III

WeChat Main-process Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

❽ Verify(appID)

Back-end

 ❻ callBack

Sender Miniapp Receiver Miniapp

I

II

III

WeChat Main-process

Req, appID

❸ saveConfig(Msg)

 ❷ LaunchReceiver(appID)

❹ loadConfig(Msg)

Front-end

 ❼ saveConfig(Msg)

 ❽
LaunchReceiver(appI

D)

❾ loadConfig(Msg)

 onShow

Back-end

 ❹ navigateBackMiniprogram(Info)

Front-endBack-end

❶ navigateToMiniprogram(appID,Req)

Sender Miniapp Receiver Miniapp

 ❺ StealInfo(Info)

 ❸ Consume(Req)

Sender Receiver

(I)

(II)

(II)

(IV)

Miniapp's Front-end Back-end

MK(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat’s Front-end WeChat’s Back-endAttackers Miniapp’s Back-end

MK

(I)

❶ getLoginToken

❷ sendLoginToken(LTeve)

LTeve

❸ getEK(appID, MK, LT)

EK

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

(II)

WeChat’s Front-end WeChat’s Back-end

WeChat

Attacker

WeChat

C
M

R
F-D

M
C

M
R

F-D
S

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References12/28

(T4) Cross Miniapp Request Forgery (CMRF)

wechat

Category No Use Checked Vulnerable
app %total # app % # app %

Business 131,078 5.1 81 8.07 923 91.93
E-learning 10,271 0.4 4 5.19 73 94.81
Education 240,077 9.34 184 3.72 4,756 96.28
Entertainment 29,442 1.14 140 33.02 284 66.98
Finance 3,509 0.14 6 6.67 84 93.33
Food 114,675 4.46 332 8.07 3,780 91.93
Games 88,056 3.42 10 2.09 469 97.91
Government 31,432 1.22 33 9.02 333 90.98
Health 27,716 1.08 37 5.44 643 94.56
Job 21,773 0.85 16 7.02 212 92.98
Lifestyle 394,493 15.34 269 4.23 6,092 95.77
Photo 9,039 0.35 3 4.41 65 95.59
Shopping 989,498 38.48 743 2.56 28,304 97.44
Social 20,671 0.8 6 2.99 195 97.01
Sports 15,980 0.62 69 22.48 238 77.52
Tool 261,467 10.17 122 3.72 3,161 96.28
Traffic 35,412 1.38 53 9.28 518 90.72
Travelling 10,524 0.41 5 3.62 133 96.38
Uncategorized 83,983 3.27 0 0.0 18 100.0
Total 2,519,096 97.96 2,113 4.03 50,281 95.97

Baidu

Category No Use Checked Vulnerable
app %total # app % # app %

Automobile 356 0.24 0 0.0 2 100.0
Business 5,201 3.5 0 0.0 113 100.0
Charity 2 0.0 0 0 0 0
E-commerce 96 0.06 0 0 0 0
Education 1,378 0.93 0 0.0 3 100.0
Efficiency 10,852 7.31 0 0.0 1 100.0
Entertainment 195 0.13 1 11.11 8 88.89
Finance 45 0.03 0 0.0 2 100.0
Food 123 0.08 0 0 0 0
Government 282 0.19 0 0.0 5 100.0
Health 2 0.0 0 0 0 0
Information 1,736 1.17 0 0.0 6 100.0
IT tech 113 0.08 0 0 0 0
Lifestyle 1,818 1.22 0 0 0 0
Medical 97 0.07 0 0 0 0
News 4 0.0 0 0 0 0
Post service 163 0.11 0 0 0 0
Real estate 1,510 1.02 0 0 0 0
Shopping 116,093 78.17 0 0.0 327 100.0
Social 205 0.14 0 0 0 0
Sports 145 0.1 0 0 0 0
Tool 46 0.03 0 0 0 0
Traffic 226 0.15 0 0.0 1 100.0
Travelling 1,473 0.99 0 0 0 0
Uncategorized 5,857 3.94 0 0.0 25 100.0
Total 148,018 99.67 1 0.2 493 99.8

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References13/28

(T5) Exploiting Key Leakage from Miniapps [ZYL23]

Attack Procedure
▶ (I) Obtaining Attacker’s Encryption

Key (EK)
▶ Obtain leaked Master Key (MK)
▶ Query for EK with the MK

▶ (II) Sensitive Data Retrieval and/or
Manipulation
▶ Capture encrypted data
▶ Decrypt with MK
▶ Data manipulation
▶ Re-encrypt and send to back-end

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)Offline

 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Attacker Host App

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ saveConfig(Msg)

 ❸ LaunchReceiver(appID)

Offline

❹ loadConfig(Msg)

Offline

Msg

 ❻ navigateBackMiniprogram(Msg)

Mini-app (Victim)

 ❼ saveConfig(Msg)

 ❽ LaunchReceiver(appID)

❾ loadConfig(Msg)

 onShow

 onShow

Mini-app (Sender)

WeChat Front-endFront-endBack-end Back-end

Key Key

 ❷ getKey(appIDr)

❸ C = Enc(Key,Req)

❶ Key Negotiation

❾ Req = Dec(Key,C)

 ❽ Key = getKey(appIDs)

❺ saveConfig(C)

 ❻ loadConfig(C)

❹ Send(C)

 ❼ Send(C)

appIDrappIDs

Mini-app’s Back-end

(Victim)

Msg

 ❺ Send(Msg)

Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

WeChat Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

Mini-app (Receiver)

Mini-app’s Back-end

(Sender)

Mini-app’s Back-end

(Receiver)

Mini-app (Sender)

Host App

❽ Verify(appID)

Host App Mini-app (Receiver)

❶ navigateToMiniprogram(appID,Msg)

Msg, appID

 ❷ invokeHandler(API,Msg)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Msg)

 ❺ LaunchReceiver(appID)

Offline
 ❻ onShow

❼ loadConfig(Msg)

Offline

Msg

Mini-app (Sender)
Mini-app’s Back-end

(Sender)

Msg

Mini-app’s Back-end

(Receiver)

❽ Verify(appID)

Optional Optional

Back-end

 ❻ callBack

Sender Receiver

I

II

III

WeChat Main-process Front-end

❶ navigateToMiniprogram(appID,Req)

Req, appID

 ❷ invokeHandler(API,Req)

 ❸ addToContainer(Sender)

 ❹ saveConfig(Req)

 ❺ LaunchReceiver(appID)

❼ loadConfig(Req)

Req

Front-end

Req

Back-end

❽ Verify(appID)

Back-end

 ❻ callBack

Sender Miniapp Receiver Miniapp

I

II

III

WeChat Main-process

Req, appID

❸ saveConfig(Msg)

 ❷ LaunchReceiver(appID)

❹ loadConfig(Msg)

Front-end

 ❼ saveConfig(Msg)

 ❽
LaunchReceiver(appI

D)

❾ loadConfig(Msg)

 onShow

Back-end

 ❹ navigateBackMiniprogram(Req)

Front-endBack-end

❶ navigateToMiniprogram(appID,Req)

Sender Miniapp Receiver Miniapp

 ❺ StealInfo(Req)

 ❸ Consume(Req)

Sender Receiver

(I)

(II)

(II)

(IV)

Miniapp's Front-end Back-end

MK(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat’s Front-end WeChat’s Back-endAttackers Miniapp’s Back-end

MK

(I)

❶ getLoginToken

❷ sendLoginToken(LTeve)

LTeve

❸ getEK(appID, MK, LT)

EK

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

(II)

WeChat’s Front-end WeChat’s Back-end

WeChat

Attacker

WeChat

WeChat

Server (WS)
Attackers

Mini-Program’s

Back-end (MB)

MK

❶ getLoginToken

LTeve

❸ getUserData()

❹ D’eve = Enc(Ek’eve,Deve)

❼ D = Dec(EKeve,D’Alice)

MK

❷ getEK(appID, MK, LTeve)

EKeve

❺ Deve = Dec(Ekeve, D’eve)

❻ D’Alice = Enc(Ekeve, DAlice)

Mini-Program's

Front-end (MB)

Mini-Program's

Back-end (MB)

MK

(I)

(II)

(III)

❶ getLoginToken

❷ sendLoginToken(LT)

LT

❸ getEK(appID, MK, LT)

EK

❹ getUserData()

❺ C = Enc(EK,D)

 ❻ send(C)

❼ D = Dec(EK,C)

WeChat

Client (WC)
WeChat

Server (WS)

(I)

(II)

WeChat’s Back-end AttackersMiniapp’s Back-end

MK

MK

AT

❶ getAccessToken(appID, MK)

❶ getAccessToken(appID, MK)

❷ InvokeService(AT)

AT

M
a
li

ci
o
u

s
C

a
se

B
en

ig
n

 C
a

se

WeChat

Client (WC)

Services

❷ InvokeService(AT)

Services

WeChat

Server (WS)

Mini-Program’s

Back-end (MB)

MK

➀ getAccessToken(appID, MK)

➁ InvokeService(AT)

AT

Services

 ➀, ➁

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References14/28

(T5) Key Leakage from Miniapps [ZYL23]

POST /sbkminiapi/api/mini/SNS/DecodeBySessionId HTTP/1.1
Host: nescafeofficecafe.nestleprofessional.cn
{"sessionId":"f3d3166416804afca858b4f35e7176eb",
 "iv":"Tf2s2x5ymqX9CqpqB6s6OA==",

"encryptedData":"UG0jLnZyvI/9knC5+sBIt2R4qNnIxIPYuFUATmxSVAl7+fiFCI431QAN4KtQRH1IPqPag38fih
tpw78JuR9E0NTEgYZb2k3lYfYWVzURrh/eeQbBdy7mviFfEdpvhw/oDN7/5Qae+WOahlS3x8MW1xmGykMzfHfHUVFmT
1vDtc/1OgRcOviNMq2aaa5F3q9m/gDFvBrB6s+/JgUylCO/Jw==“
}

{ “phoneNumber”:“137****7089",
 "purePhoneNumber":"137****7089",
 "countryCode":"86",
 "watermark":
 {"timestamp":1619948088,
 "appid":"wx1bb769d037cd1204"}}

import requests
MK="c5bfc2f3********06d32a08c5a4397“
appid="wx1bb769d037cd1204"
LT="043FpdGa1fczXA0HiYHa1DxTZj4FpdGh"
request.get("https://api.weixin.qq.com/sns/jscode2s
ession?appid="+appid+"&secret="+MK+"&js_code="+LT)

{
 “session_key”:“a9ah7ZiIDSxZU6oTzLCW6g==",
 “openid”:“ozF5L5KfNCrV9IWxp7bzshfUowhw",
 "unionid":"oirId1bDzwqsbPhITe3VfuWPaPR4"
}

GET /checkSigna?
signature=82423f46449469a8a5c3983
efab06c5f1456c9c3×tamp=16199
48064&encrypt_type=login&nonce=22
08800081<=
043FpdGa1fczXA0HiYHa1DxTZj4FpdGh&
encrypt_kb=140&
encrypt_data=1.3.2 HTTP/1.1

(I
) O

bt
ai

ni
ng

 A
tt

ac
ke

r’
s

E
nc

ry
pt

io
n

K
ey

 (E
K

)
(I

I)
 U

se
r

Ph
on

e
N

um
be

r
R

et
ri

ev
al

 a
nd

 M
an

ip
ul

at
io

n

POST /sbkminiapi/api/mini/SNS/DecodeBySessionId HTTP/1.1
Host: nescafeofficecafe.nestleprofessional.cn
{
 "sessionId":"f3d3166416804afca858b4f35e7176eb",
 "iv":"oqoILJ0lzHPyCM5pRmcvXg==",

"encryptedData":"M7mbLgnlz7HExQMBwyCLSMn%2BbTEvej75HiyodIFdbi4WyhF%2BPh9v5%2B1c1DmhD7PPzPnd%2F
pB2sd7F5sakqoq0eKhlLiZaQJtQS56HK0BC08g5x9k6sHd6bhMdG7HWS4f1peKF5qFA2es39VWk2F%2FLSh3cLJB3qS8m7
7jYptBEsqRto%2BmCopnNxXBBnOiP%2FLCQt6kF0C8gMqfuPvXWsD03yQ%3D%3D“

}

❶ ❷ ❸

❹ ❺

❻

Request ResponseRequest

EKencryptedData

AES

{ “phoneNumber”:“189****3630",
 "purePhoneNumber":"189****3630",
 "countryCode":"86",
 "watermark":
 {"timestamp":1619948088,
 "appid":"wx1bb769d037cd1204"}}

AES

encryptedData

Request

Request

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References15/28

(T6) Missing Signature Verification [ZYL23]

Potential Risks Arising from the Absence of Signature Verification in Miniapp Plugins SaTS ’23, November 26, 2023, Copenhagen, Denmark

Backend FrontendBackend

Miniapp: for online shopping

Backend BackendFrontend

Miniapp plugin: for online payment

Host app

➊ myPluginInterface.pay(100)

➋ paymentSolving.pay(100)

➌ Reply “Payment successful!”

Figure 1: An example of the synergy between miniapps and
plugins in payment scenarios.

successful payment message back to the miniapp ➌. Armed with
this confirmation, the miniapp then proceeds to the next steps, such
as shipping the purchased item or handling potential refunds.

This synergy betweenminiapps and plugins not only streamlines
the payment process but also allows for the integration of various
other services, such as location tracking, IoT device controlling [40],
social sharing, or personalized recommendations. The flexibility
and modularity of this system enable developers to create rich,
dynamic experiences without overcomplicating the core miniapp
structure.

3 SECURE SIGNATURE MECHANISM
While plugins offer enhanced functionalities, they also introduce
potential security concerns. Ensuring the integrity and authenticity
of network requests is vital to prevent malicious activities such as
spoofing or tampering. Hence, developers are guided by Tencent [2]
to implement a robust digital signature mechanism. Broadly, this
mechanism can be divided into two primary phases:
(I) Signature Generation.When a plugin sends a network request
via APIs such as wx.request, the request will additionally carry a
signature to verify that the request is sent from a miniapp plugin.
This signature is located in the request header and looks like as
below:

X-WECHAT-HOSTSIGN: {"noncestr":"NONCESTR",
"timestamp":"TIMESTAMP", "signature":
"SIGNATURE"}

↩→

↩→

• NONCESTR: A random string that introduces unpredictabil-
ity into the signature. This ensures that even if the other
parameters remain constant, the signature will differ with
each request, making it resistant to replay attacks.

• TIMESTAMP : A UNIX timestamp that provides a temporal
context to the request. This ensures that requests are time-
bound, adding another layer of security against potential
attacks.

Here, NONCESTR and TIMESTAMP are used to generate SIGNA-
TURE. The algorithm for calculating the signature is:

SIGNATURE = sha1([APPID, NONCESTR, TIMESTAMP,

TOKEN].sort().join(''))↩→

Backend FrontendBackend

Miniapp

Attacker Backend BackendFrontend

Miniapp plugin

➊ myPluginInterface.pay(100)

➋ myPluginInterface.pay(1)

➌ paymentSolving.pay(1)

➎ Reply “Payment successful!” -> “Payment failed!”

➍ Signature Verification

(1) Sorting Parameters
(2) Concatenation

(3) Hashing

Host app

Figure 2: A protected payment process with signature verifi-
cation.

APPID is the AppId (which can be obtained from the referrer
in the request header) of the miniapp where a plugin resides, and
TOKEN is the token of the plugin:

• APPID: This serves as the unique identifier for the miniapp.
It ensures that the request is associated with a specific appli-
cation within the WeChat ecosystem.

• TOKEN : Specific to the plugin, this token acts as a secret
key, ensuring that only legitimate plugins can generate valid
signatures.

(II) Signature Verification. The verification process is a critical
aspect of ensuring the integrity and authenticity of the communi-
cation between miniapps and plugins. Plugin developers can verify
a signature by performing the following steps on their server:

(1) Sorting Parameters. The first step in the verification pro-
cess involves sorting the values ofAPPID,NONCESTR, TIMES-
TAMP, and TOKEN in lexicographical order. This order is
consistent with the sorting order of JavaScript arrays. By
arranging these parameters in a specific sequence, a stan-
dardized format is established, which is essential for the
subsequent verification process.

(2) Concatenation. Once sorted, the four strings are concate-
nated directly. This concatenation forms a unique string that
represents the specific request. The concatenation ensures
that the signature is sensitive to the exact values and order
of the parameters, making it a robust mechanism against
tampering.

(3) Hashing. The concatenated string is then hashed using the
sha1 algorithm. This cryptographic hash function takes the
concatenated string and produces a fixed-size hash value,
referred to as the SIGNATURE. The resulting SIGNATURE
serves as a fingerprint of the original request, encapsulating
the critical information in a form that is difficult to forge. If
any part of the original request is altered, the signature will
change, allowing the server to detect the modification.

As illustrated in Figure 2, once the plugin has undergone the
signature verification process ➍, any tampering with the message
by an attacker ➋ will be detected by the plugin. This detection
leads to the plugin returning a payment failure result ➎, effectively
thwarting the attack. The signature verification process thus plays
a crucial role in maintaining the security of the communication

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yanjie Zhao, Yue Zhang, and Haoyu Wang

Backend FrontendBackend

Miniapp

Attacker Backend BackendFrontend

Miniapp plugin

Host app

Without Signature Verification
➊ myPluginInterface.pay(100)

➋ myPluginInterface.pay(1)

➌ paymentSolving.pay(1)

➍ Reply “Payment successful!”

Figure 3: An example of the spoofing attacks during the pay-
ment process within miniapps.

between miniapps and plugins, providing a robust defense against
spoofing and tampering attacks. By implementing this verification
process, developers can enhance the trustworthiness of their plu-
gins and protect both users and merchants from potential fraud.
This process is particularly crucial in scenarios where sensitive op-
erations such as payments or personal data retrieval are involved.
Without proper verification, an attacker could potentially modify
the request parameters, leading to unauthorized actions or infor-
mation disclosure.

4 SPOOFING ATTACK
As discussed in §3, the significance of signatures in miniapp plugin
security is evident. Yet, developers lacking expertise might inad-
vertently disregard instructions, leading them to integrate plugins
without the crucial signature verification measures. In the absence
of signature verification, this creates a window of opportunity for
malicious users to manipulate messages during the communication
process, consequently enabling spoofing attacks [8].

4.1 Threat Model and Scope

Assumptions. We assume code integrity for the host app and
miniapp’s frontend, and trust in the encrypted communication
between the miniapp and the plugin. The plugin may be untrusted
if lacking signature verification. The spoofing attack can succeed
primarily due to the absence of mandatory signature verification in
the plugin. An attacker canmanipulate the communication between
the miniapp and the plugin, altering the content without detection
if the plugin does not verify the signature.
Scope. For the purpose of this study, we focus on the miniapps
utilizing plugins without mandatory signature verification. This
issue is particularly relevant in environments where plugins are
developed by third parties, and there is no enforced standard for
signature verification.

4.2 Attack Workflow

Overview.Without implementing signature verification inminiapp
plugins, attackers can exploit vulnerabilities to launch various at-
tacks. For instance, by modifying the timestamp, they can initiate a
command re-execute attack, causing the plugin to accept fraudu-
lent requests. Similarly, altering the hash value can lead to a data
manipulation attack, where the content of the message between
the miniapp and the plugin is changed. We now use two detailed
examples to further explain the attacks.

Data Manipulation Attack. In this scenario, the attacker assumes
the role of a malicious user, aiming to manipulate the data ex-
changed between the miniapp plugin and its server. To achieve this,
the attacker must modify the content and regenerate a hash value
(referred to as the signature field in the message). A malicious
customer or attacker could exploit vulnerabilities in the communi-
cation between the miniapp and the plugin as shown in Figure 3.
For example, if the attacker intercepts the message sent from the
miniapp to the plugin ➊ and alters the amount from 100 units to
1 unit ➋, and the plugin itself lacks signature verification, it may
unknowingly fall victim to a spoofing attack. The plugin would
then treat the attacker’s message as if it were legitimately from
the miniapp. Remember that in §2.1 we mentioned the plugin itself
cannot read the content of the miniapp’s page, and therefore relies
solely on this communication channel to interact with the miniapp.

Once the consumer completes the payment of 1 unit ➌, the plu-
gin sends a successful payment message back to the miniapp ➍. The
attacker’s fraudulent scheme succeeds, resulting in a loss of 99 units
for the merchant behind the miniapp. This example underscores
the importance of robust security measures, such as signature ver-
ification, to prevent spoofing attacks and ensure the integrity of
communications between miniapps and plugins.
Command Re-execute Attack. A command re-execute attack
involves an attacker intercepting and then resending a message
that was initially transmitted from a miniapp plugin to its server.
The attacker’s aim is to deceive the server into believing that the
retransmitted message is a legitimate and fresh communication
from the miniapp plugin. Because the miniapp plugin’s server fails
to validate both the timestamp and the signature, an attacker
gains the ability to compel the server to re-execute a previously
executed command (e.g., shipping a product that is shipped before).
Given the similarity in the attack workflow to the first scenario, we
omitted the details for conciseness.

5 RELATEDWORK

Miniapp and Superapp Security. Existing studies on miniapps
mainly concentrate on their architecture and applications. For in-
stance, Hao et al. [16] explored the system architecture of WeChat
miniapps, while others have investigated their applications in vari-
ous domains such as healthcare [32, 44] and education [12, 19, 28].
Some works have also uncovered vulnerabilities in miniapps and
super apps [24, 27, 30, 31, 37, 38, 41]. Unlike these studies, we are the
first to study the security of miniapp plugins. Our research specif-
ically targets potential risks and mitigation strategies associated
with the absence of mandatory signature verification.
Mobile Security. Research in the mobile security domain is charac-
terized by a sustained focus on identifying and mitigating vulnera-
bilities that could potentially undermine system reliability and data
integrity [15, 18, 21, 22, 26, 29, 42]. A plethora of studies have delved
into various aspects such as application security [17, 23, 43], privacy
preservation [13, 14, 35], and secure communication [25, 33, 34, 45].
Distinct from these studies, our work narrows down to a specialized
investigation in the miniapp domain.
Vulnerability Discovery in Online Services. Extensive efforts
have been made to detect vulnerabilities in online services. These

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References16/28

Tencent’s Security Hall of Fame

https://en.security.tencent.com/index.php/thanks

https://en.security.tencent.com/index.php/thanks

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References17/28

Malware Taxonomy Based on Payloads

EIA-485 EIA-232

Tunnel ConnectReq

Tunnel ConnectResp①

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack②

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack③

TunnelReq L_Data Req (<ACPI>)

Tunnel Ack④

⑤

TunnelReq L_Data Inid. (<ACK>)

Tunnel Ack⑥

TunnelReq L_Data Con (<ACPI>)

Tunnel Ack

TunnelReq L_Data Inid. (<ACPI>)

Tunnel Ack

TunnelReq L_Data Req (<ACK>)

Tunnel Ack

TunnelReq L_Data Con (<ACK>)

Tunnel Ack

TunnelReq L_Data Req (Disconnected)

Tunnel Ack⑨

TunnelReq L_Data Con (Disconnected)

Tunnel Ack

DisconnectReq

DisconnectResp

Establish Tunnel Connection

Tunnel Data Flow

Terminate Tunnel Connection

⑦

⑧

⑩

KNX ServerKNX Client

Configurable File

JavaScript Files

WXML

WXSS

Resource Files

Operation System

WeChat

Input Box

Input Box

Bike Hiring

Healthcare

Shopping

Tools

…

Front-end Back-end

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

…

Protocol Analyzer
§ 4.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Client Inspector

§ 4.3

(I) Inspecting Client Function

Server Examiner

§ 4.4

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

§ 4.2 Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
R

e
su

lt
s

BASE Overview

Building Automation Systems

Analyzing BAS Protocol

T 2.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Inspecting BAS Client
T 2.2

(I) Inspecting Client Function

Examining BAS Server
T 2.3

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
R

e
su

lt
s

Building Automation Systems

Feedback

Feedback

Feedback

Feedback

BACnet Application Layer

BACnet Protocol Layer

ISO 8802-2 (IEEE 802.2)
Type

MS/TP PTP

LonTalk
ISO 8802-3
(IEEE 802.3)

ARCNET

Application

Protocol

Data Link

Physical

BACnet Layers
Equivalent
OSI Layers

U
p

p
e

r
la

ye
r

St
ac

k

Lo
w

e
r

la
ye

r
St

ac
k

T3.1 Network-Level Protection: a state machine-based IDS

T3.2 Soft-Level Protection: TrustZone-based SDKs

BAS network protocol stack

finite state machine malicious state

TrustZone

Secure
Booting

Input
Validation ASRL

API

Internet Connection

Wireless Connection

Pre-Attack In Progress-Attack Post-Attack

Signals can overlap

Numerous devices

Limited resources

Sophisticated attacks

Signals can overlap

Numerous devices

Challenges

Task I Task 2 Task 3

Intrusion Detection System Security Proxy Intrusion Detection System

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test1~4 month
5~8 month

9~12 month

Timelines

Malware (Vetting Bypass)

Code Vetting Bypass Content Vetting Bypass Fake Reporting Malware

Bypassing Vetting via a High-level
Interpreter

Bypassing vetting via a low-level
Virtual Machine

Concealing Content through Remote
Servers

Concealing Content through Local
Environment

JavaScript AST IR Bytecodeparser codegen assembler

Download

Miniapp

dist/vm.js
Failed Passed

Controlled By Time

Controlled By Remote Server

Malware (Payload)

Information Gathering Financial Charge Malware Grayware

Information Collection via Tricking
the Users

Information Collection via Collusion

Financial Charge via Fraud

Financial Charge via Phishing
Malware

Reciprocal promotion

Gambing

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References18/28

T7: Information Gathering

Information Gathering via Tricking the Users [opr]

EIA-485 EIA-232

Tunnel ConnectReq

Tunnel ConnectResp①

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack②

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack③

TunnelReq L_Data Req (<ACPI>)

Tunnel Ack④

⑤

TunnelReq L_Data Inid. (<ACK>)

Tunnel Ack⑥

TunnelReq L_Data Con (<ACPI>)

Tunnel Ack

TunnelReq L_Data Inid. (<ACPI>)

Tunnel Ack

TunnelReq L_Data Req (<ACK>)

Tunnel Ack

TunnelReq L_Data Con (<ACK>)

Tunnel Ack

TunnelReq L_Data Req (Disconnected)

Tunnel Ack⑨

TunnelReq L_Data Con (Disconnected)

Tunnel Ack

DisconnectReq

DisconnectResp

Establish Tunnel Connection

 Tunnel Data Flow

Terminate Tunnel Connection

⑦

⑧

⑩

KNX ServerKNX Client

Configurable File

JavaScript Files

WXML

WXSS

Resource Files

Operation System

WeChat

Input Box

Input Box

Bike Hiring

Healthcare

Shopping

Tools

…

Front-end Back-end

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

…

Protocol Analyzer
§ 4.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Client Inspector

§ 4.3

(I) Inspecting Client Function

Server Examiner

§ 4.4

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

§ 4.2 Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

BASE Overview

Building Automation Systems

Analyzing BAS Protocol

T 2.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Inspecting BAS Client
T 2.2

(I) Inspecting Client Function

Examining BAS Server
T 2.3

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

Building Automation Systems

Feedback

Feedback

Feedback

Feedback

BACnet Application Layer

BACnet Protocol Layer

ISO 8802-2 (IEEE 802.2)
Type

MS/TP PTP

LonTalk
ISO 8802-3
(IEEE 802.3)

ARCNET

Application

Protocol

Data Link

Physical

BACnet Layers
Equivalent
OSI Layers

U
p

p
e

r
la

ye
r

St
ac

k

Lo
w

e
r

la
ye

r
St

ac
k

T3.1 Network-Level Protection: a state machine-based IDS

T3.2 Soft-Level Protection: TrustZone-based SDKs

BAS network protocol stack

 finite state machine malicious state

TrustZone

Secure
 Booting

Input
Validation ASRL

API

Internet Connection

Wireless Connection

Pre-Attack In Progress-Attack Post-Attack

Signals can overlap

Numerous devices

Limited resources

Sophisticated attacks

Signals can overlap

Numerous devices

Challenges

Task I Task 2 Task 3

 Intrusion Detection System Security Proxy Intrusion Detection System

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test1~4 month
5~8 month

9~12 month

Timelines

Malware (Vetting Bypass)

Code Vetting Bypass Content Vetting Bypass Fake Reporting Malware

Bypassing Vetting via a High-level
Interpreter

Bypassing vetting via a low-level
Virtual Machine

 Concealing Content through Remote
Servers

Concealing Content through Local
Environment

JavaScript AST IR Bytecodeparser codegen assembler

Download

Miniapp

dist/vm.js
Failed Passed

Controlled By Time

Controlled By Remote Server

Malware (Payload)

Information Collection Financial Charge Malware Grayware

Information Collection via Tricking
the Users

Information Collection via Collusion

Financial Charge via Fraud

Financial Charge via Phishing
Malware

Reciprocal promotion

Casino

Date of Brith Phone Number Blood types

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References18/28

T7: Information Gathering

Information Gathering via Collusion [opr]

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References19/28

T8: Financial Charge Malware

Financial Charge via Fraud [opr]

EIA-485 EIA-232

Tunnel ConnectReq

Tunnel ConnectResp①

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack②

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack③

TunnelReq L_Data Req (<ACPI>)

Tunnel Ack④

⑤

TunnelReq L_Data Inid. (<ACK>)

Tunnel Ack⑥

TunnelReq L_Data Con (<ACPI>)

Tunnel Ack

TunnelReq L_Data Inid. (<ACPI>)

Tunnel Ack

TunnelReq L_Data Req (<ACK>)

Tunnel Ack

TunnelReq L_Data Con (<ACK>)

Tunnel Ack

TunnelReq L_Data Req (Disconnected)

Tunnel Ack⑨

TunnelReq L_Data Con (Disconnected)

Tunnel Ack

DisconnectReq

DisconnectResp

Establish Tunnel Connection

 Tunnel Data Flow

Terminate Tunnel Connection

⑦

⑧

⑩

KNX ServerKNX Client

Configurable File

JavaScript Files

WXML

WXSS

Resource Files

Operation System

WeChat

Input Box

Input Box

Bike Hiring

Healthcare

Shopping

Tools

…

Front-end Back-end

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

…

Protocol Analyzer
§ 4.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Client Inspector

§ 4.3

(I) Inspecting Client Function

Server Examiner

§ 4.4

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

§ 4.2 Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

BASE Overview

Building Automation Systems

Analyzing BAS Protocol

T 2.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Inspecting BAS Client
T 2.2

(I) Inspecting Client Function

Examining BAS Server
T 2.3

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

Building Automation Systems

Feedback

Feedback

Feedback

Feedback

BACnet Application Layer

BACnet Protocol Layer

ISO 8802-2 (IEEE 802.2)
Type

MS/TP PTP

LonTalk
ISO 8802-3
(IEEE 802.3)

ARCNET

Application

Protocol

Data Link

Physical

BACnet Layers
Equivalent
OSI Layers

U
p

p
e

r
la

ye
r

St
ac

k

Lo
w

e
r

la
ye

r
St

ac
k

T3.1 Network-Level Protection: a state machine-based IDS

T3.2 Soft-Level Protection: TrustZone-based SDKs

BAS network protocol stack

 finite state machine malicious state

TrustZone

Secure
 Booting

Input
Validation ASRL

API

Internet Connection

Wireless Connection

Pre-Attack In Progress-Attack Post-Attack

Signals can overlap

Numerous devices

Limited resources

Sophisticated attacks

Signals can overlap

Numerous devices

Challenges

Task I Task 2 Task 3

 Intrusion Detection System Security Proxy Intrusion Detection System

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test1~4 month
5~8 month

9~12 month

Timelines

Malware (Vetting Bypass)

Code Vetting Bypass Content Vetting Bypass Fake Reporting Malware

Bypassing Vetting via a High-level
Interpreter

Bypassing vetting via a low-level
Virtual Machine

 Concealing Content through Remote
Servers

Concealing Content through Local
Environment

JavaScript AST IR Bytecodeparser codegen assembler

Download

Miniapp

dist/vm.js
Failed Passed

Controlled By Time

Controlled By Remote Server

Malware (Payload)

Information Collection Financial Charge Malware Grayware

Information Collection via Tricking
the Users

Information Collection via Collusion

Financial Charge via Fraud

Financial Charge via Phishing
Malware

Reciprocal promotion

Casino

Date of Brith Phone Number Blood types

Fake Red Packet Online Earning

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References19/28

T8: Financial Charge Malware

Financial Charge via Phishing Malware

(a) Real Prominent UI (b) Fake Prominent UI

Figure 3: Safari’s Prominent UI confusion on iOS

of a user [37]. This attack sub-app successfully passed the vetting
of Wechat sub-app store and ran on both iOS and Android versions
of Wechat. Note that, our attack sub-app has less than 200 lines of
code, which indicates that it is cost-effective for the adversary to
develop APINA flaws malware in the wild. Besides, we successfully
built attack sub-apps in other host apps, e.g., Alipay, DingTalk, etc.,
and reported the problems to all affected host-app vendors. They
all acknowledged the problem; in particular, Wechat and Alipay
awarded us through bug bounty programs for this flaw.

3.2 Sub-window Deception
Another unique app-in-app feature is the functionality-level inter-
actions between the host and sub-app. For this need, the host does
not fully isolate itself from sub-apps, which unwittingly introduces
new attack surfaces and high spoofing risks against host-app UI.
Browsers’ Prominent UI confusion. To bring a native app-like
experience, Safari on iOS and Chrome on Android open each sub-
app (i.e., Web App, Progressive Web App, or PWA) in an entire
dedicated window separate from the browser window just like a
native app [44, 78] – without any browser UI such as the address
bar. Web App is programmed with JavaScript and HTML, but must
meet certain standards [68]. With user confirmation, the browser
can install a Web App to the phone’s home screen (through an
APK [69] package created by Chrome, or a Web Clip [44] created
by Safari). Such Web App takes the full screen if “standalone" or
“fullscreen" is specified in its manifest file. EachWeb App is clearly
associated with specific Web domain when installed. When the user
navigates to out-of-scope URL (i.e., of different origin) in a Web
App, the browser displays a Prominent UI – a banner at the top of
the screen (Figure 3a) showing the origin and secure connection
status – due to the lack of address bar. According to Web App
documentation [67], users rely on such Prominent UI to be aware
when they navigate out of scope, an important security notice.

Based on a study [57], mobile phishing attacks tend to happen
when users become accustomed to familiar, repeated contexts. More
specifically, if users frequently encounter legitimate context, they
will become conditioned to reflexively respond to it. Here, the cur-
rent design of Web App conditions users to see the Prominent UI in
out-of-scope navigation, which we found poses a spoofable context.

(a) Authentic wallet UI (b) Bogus wallet UI

Figure 4: Mobile wallet UI confusion

Specifically, Web App is designed to embrace out-of-scope brows-
ing [104] and let users freely navigate to other Web domains for
services, such as login through Facebook/Google (a.k.a., SSO [107]),
payment through PayPal, etc. The problem is that, when a victim
user navigates out of scope, e.g., to Facebook login page, a mali-
cious Web App can actually navigate to an in-scope phishing page
imitating Facebook, showing a bogus Prominent UI (as if shown by
the browser) to misleadingly inform the victim that she is on a real
Facebook domain (Figure 3b). In this way, the malicious Web App
can collect victim users’ secrets such as Facebook passwords.

We call this problem Sub-window Deception – sub-window means
part of a window. Prior phishing attacks in browsers explored
how a webpage can go full screen and spoof the address bar [1,
2]; as another instance of mobile browser UI attacks, our attack
complements the prior understanding, by exploiting Prominent
UI – the counterpart of address bar in the context of native app-
like Web App. Note that, address bar differs from Prominent UI
in design: based on the Web specification [106], browsers “should
provide a means of exiting fullscreen that always works and advertise
this to the user" [106], so users can see the real address bar when
they want (although browsers may not implement this protection
properly [89]); Web App users, however, lack practical mechanisms
to verify the authenticity of Prominent UI today. This attack applies
to general Web App on both iOS and Android: we reported it to
W3C4, Apple, Google, Firefox, and Opera, which all acknowledged
the importance of the problem.
Mobile Wallet UI confusion. Wechat and Alipay both feature
mobile wallets, which can be leveraged by e-commerce sub-apps
to provide users a convenient payment process. Amazon sub-app,
for example, after a user clicks its “checkout with Wechat wal-
let” button, will invoke a sub-app API (e.g., wx.requestPayment
in Wechat) to trigger the host’s wallet; the host then reclaims a
central portion of the screen from the sub-app, to show its wallet
UI (highlighed in Figure 4a), for the user to enter her wallet pass-
word and finish the payment. Such a context can condition users
to reflexively provide wallet passwords at checkout, and therefore
presents a practical spoofing target. Specifically, when a victim user
clicks the “check out" button in a malicious e-commerce sub-app, it
can show a bogus wallet UI (Figure 4b) to collect the user’s wallet
password, instead of invoking the real wallet.

4We do not provide the link to our report for anonymization purpose

6

Mobile wallet UI confusion [LXX+20]

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References20/28

T9: Grayware

Gambling [opr]

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References21/28

Code Vetting

Local
API

Cloud
API

Location

Bluetooth

Audio

Camera

(S1) Permission Mechanism

Address

Contacts

Photo

(S2) Sandboxing
Files

JS Code

Execution

Environment

(S4) Hot Update Restriction

(S5) API Restriction
APIs

Mobile OS Resources

Superapp Resources

External Web

Sites

(S7) Secure Communication

(S3) DOM Tree Isolation

(S6) Domain Allowlisting

Internal Cloud

Resources

(S8) Token Based Services Access

(S9) Role-based Access Control

(S10) Data Encryption

Phone number

User info

Werun data

Share info

(S11) Code VettingMiniapp

Packages

(S12) Account Protection
User Account

(S13) Third Party Integration

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T10) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T10) Single Point Failure

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

APIs (S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

(S13) Third Party Integration

User Account (S12) Account Protection

(T1) Data Leakage via Phishing Attack

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T5) Data Leakage via Collusion

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T10) Privileged Access via Identity Confusion

(T10) Privileged Access via Identity Confusion

(T3) Privileged Access via Hidden APIs

(T1) Data Leakage via Phishing Attack

(T4) Privileged Access via Cross-Miniapp-Channel

(T12) Vetting bypass via Hot Updating

Operating System

Host app

Developer

Developer Tool

Third-party

Server

Cloud API

Miniapp Market

User Database

Super App CloudNetworking

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

(S1) Permission Mechanism

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution Environment

(S3) DOM Tree Isolation

(S4) Hot Update Restriction

External Web Sites

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Web Sites

(S8) Token Based Services Access

Phone number

User Info

Werun data

Shareinfo

(S8) Data Encryption

Miniapp Packages

(S11) Code Vetting

User Account

(T1) Data Leakage via Phishing Attack

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(S9) Role-based Access Control

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Data Leakage via Flawed Permission

(T3) Privileged Access via Hidden APIs

(T4) Privileged Access via Cross-Miniapp-Channel

Super App Frontend
Resources or Services

Super App Backend
Resources or Services

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g

 B
y

p
a

ssin
g

(S13) Third Party Integration

(S12) Account Protection

①
APIs

②

③

④

⑤

⑥

⑦

⑧

⑨

Contacts

Address

Location

Bluetooth

Audio

Camera

Photos

Files (S2) Sandboxing

(S3) API Restriction

JS Code Execution
Environment

(S4) Cross-miniapp Restriction

(S5) Designated Distribution Channel

External Web
Domain

(S6) Domain Allowlisting

(S7) Secure Communication

Internal Cloud
Database

Phone number

User Info

Werun data

Shareinfo

(S9) Data Encryption

Miniapp Packages (S12) Code Vetting

User Account

(T1) Flawed Permission

(T5) Data Leakage via Collusion

(T7) Data Leakage via Weak Data Management

(T8) Data Leakage via Key-misuse

(T9) Data Leakage via Abused Token

(T11) Malware downloading via Vetting bypass

(T12) Vetting bypass via Hot Updating

(T13) Vetting bypass via Content Switching

(T14) Single Point Failure

(T6) Privileged Access Due to Cross-Platform Vulnerabilities

(T10) Privileged Access via Identity Confusion

(T2) Cross-platform Vulnerability

(T3) Privileged Access via Hidden APIs

Su
p

e
r

A
p

p
 F

ro
n

te
n

d
 R

e
so

u
rc

e
s

o
r

Se
rv

ic
e

s
Su

p
e

r
A

p
p

 B
ac

ke
n

d
 R

e
so

u
rc

e
s

o
r

Se
rv

ic
e

s

D
a

ta
 L

ea
k

a
g

e
P

r
iv

ile
g
ed

 A
cc

ess
V

ettin
g

 B
y

p
a

ssin
g

(S13) Account Protection

(S8) Role-based Access Control

(S10) Token Based Access Control

(S11) Token Based Isolation

A
va

ila
b

ili
ty

Internal Cloud
Resources

(S1) Permission Mechanism

C
o

n
fi

d
e

n
ti

al
it

y
In

te
gr

it
y

A
u

th
e

n
ti

ci
ty

C
o

n
tacts

A
d

d
re

ss

Lo
catio

n

B
lu

e
to

o
th

A
u

d
io

C
am

e
ra

P
h

o
to

s

File
s

(S2
) San

d
b

o
xin

g

(S3
) A

P
I R

e
strictio

n

JS C
o

d
e

 Exe
cu

tio
n

En

viro
n

m
e

n
t

(S4
) C

ro
ss-m

in
iap

p
 R

e
strictio

n

(S
5
) D

esig
n

a
ted

 D
istrib

u
tio

n
 C

h
a

n
n

el

Exte
rn

al W
e

b

D
o

m
ain

(S
6
) D

o
m

a
in

 A
llo

w
listin

g

(S
7
) S

e
cu

re C
o

m
m

u
n

ica
tio

n

In
te

rn
al C

lo
u

d

D
atab

ase

P
h

o
n

e
 n

u
m

b
e

r

U
se

r In
fo

W
e

ru
n

 d
ata

Sh
are

in
fo

(S
9
) D

a
ta

 E
n

c
ry

p
tio

n

M
in

iap
p

 P
ackage

s
(S

1
2

) C
o

d
e V

ettin
g

U
se

r A
cco

u
n

t

Super App Frontend Resources or ServicesSuper App Backend Resources or Services

(S
1
3

) A
cco

u
n

t P
r
o
tectio

n

(S
8
) R

o
le

-b
a

sed
 A

ccess C
o
n

tro
l

(S1
0

) To
ke

n
 B

ase
d

 A
cce

ss C
o

n
tro

l

(S1
1

) To
ke

n
 B

ase
d

 Iso
latio

n

Availability

In
te

rn
al C

lo
u

d

R
e

so
u

rce
s

ConfidentialityIntegrityAuthenticity

(S1
) P

e
rm

issio
n

 M
e

ch
an

ism

Local
API

Cloud
API

Operating System

Host app

Developer

Developer Tool

Third-party

Server

Cloud API

Miniapp Market

User Database

Super App CloudNetworking

①
APIs

②

③

④

⑤

⑥

⑦

⑧

⑨

Host app

...

Miniapps

Network Downloading

User Importing

Official Market

P
o

ss
ib

le
 C

h
an

n
e

ls

IDE preview

Device preview

Developing,
Previewing

Permission
Management

Vetting

Distribution

Uploading

Version Update

Alpha Version

Beta Version

Final Version

Developer,
Tester

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References22/28

Vetting Bypassing Malware

EIA-485 EIA-232

Tunnel ConnectReq

Tunnel ConnectResp①

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack②

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack③

TunnelReq L_Data Req (<ACPI>)

Tunnel Ack④

⑤

TunnelReq L_Data Inid. (<ACK>)

Tunnel Ack⑥

TunnelReq L_Data Con (<ACPI>)

Tunnel Ack

TunnelReq L_Data Inid. (<ACPI>)

Tunnel Ack

TunnelReq L_Data Req (<ACK>)

Tunnel Ack

TunnelReq L_Data Con (<ACK>)

Tunnel Ack

TunnelReq L_Data Req (Disconnected)

Tunnel Ack⑨

TunnelReq L_Data Con (Disconnected)

Tunnel Ack

DisconnectReq

DisconnectResp

Establish Tunnel Connection

 Tunnel Data Flow

Terminate Tunnel Connection

⑦

⑧

⑩

KNX ServerKNX Client

Configurable File

JavaScript Files

WXML

WXSS

Resource Files

Operation System

WeChat

Input Box

Input Box

Bike Hiring

Healthcare

Shopping

Tools

…

Front-end Back-end

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

…

Protocol Analyzer
§ 4.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Client Inspector

§ 4.3

(I) Inspecting Client Function

Server Examiner

§ 4.4

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

§ 4.2 Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

BASE Overview

Building Automation Systems

Analyzing BAS Protocol

T 2.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Inspecting BAS Client
T 2.2

(I) Inspecting Client Function

Examining BAS Server
T 2.3

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

Building Automation Systems

Feedback

Feedback

Feedback

Feedback

BACnet Application Layer

BACnet Protocol Layer

ISO 8802-2 (IEEE 802.2)
Type

MS/TP PTP

LonTalk
ISO 8802-3
(IEEE 802.3)

ARCNET

Application

Protocol

Data Link

Physical

BACnet Layers
Equivalent
OSI Layers

U
p

p
e

r
la

ye
r

St
ac

k

Lo
w

e
r

la
ye

r
St

ac
k

T3.1 Network-Level Protection: a state machine-based IDS

T3.2 Soft-Level Protection: TrustZone-based SDKs

BAS network protocol stack

 finite state machine malicious state

TrustZone

Secure
 Booting

Input
Validation ASRL

API

Internet Connection

Wireless Connection

Pre-Attack In Progress-Attack Post-Attack

Signals can overlap

Numerous devices

Limited resources

Sophisticated attacks

Signals can overlap

Numerous devices

Challenges

Task I Task 2 Task 3

 Intrusion Detection System Security Proxy Intrusion Detection System

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test1~4 month
5~8 month

9~12 month

Timelines

Malware (Vetting Bypass)

Code Vetting Bypass Content Vetting Bypass

Bypassing Vetting via a High-level
Interpreter

Bypassing vetting via a low-level
Virtual Machine

 Concealing Content through Remote
Servers

Concealing Content through Local
Environment

JavaScript AST IR Bytecodeparser codegen assembler

Download

Miniapp

dist/vm.js
Failed Passed

Controlled By Time

Controlled By Remote Server

Malware (Payload)

Information Collection Financial Charge Malware Grayware

Information Collection via Tricking
the Users

Information Collection via Collusion

Financial Charge via Fraud

Financial Charge via Phishing
Malware

Reciprocal promotion

Casino

Date of Brith Phone Number Blood types

Fake Red Packet Online Earning

Fake Reporting Malware

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References23/28

T10: Code Vetting Bypassing Malware

Bypassing Vetting via Interpretesr [CN]

Developer

Miniapp Backend

Cloud API

Local API

Superapp Backend

Local Resources

Content

Code

Operating System

➋

➌ ➌

➍

Pre-Vetting Post-Vetting

Expr

[

 {

 "type": "Identifier",

 "value": "a"

 },

 {

 "type": "Punctuator",

 "value": "="

 },

 {

 "type": "Numeric",

 "value": "1"

 },

 {

 "type": "Punctuator",

 "value": "+"

 },

 {

 "type": "Numeric",

 "value": "1"

 }

]

Lexical Analyzer

➊
Cloud Resources

Syntactic Analyzer

Expr

Operator=“=” Name=a Expr

Operator=“+” Expr

Value=1 Value=1

function handleBinaryExpression(node) { switch(node.operator) {

 case '+':

 return node.left.value + node.right.value;

 case '-':

 return node.left.value - node.right.value;

 }

}

 node.operator = '+';

 node.left.value = 1;

 node.right.value = 1;

 node.left.value + node.right.value = 2;

Code Executor

a = 2

a = 1+1

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References24/28

T11: Content Vetting Bypassing Malware [Sin]

EIA-485 EIA-232

Tunnel ConnectReq

Tunnel ConnectResp①

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack②

Tunnel L_Data ConnectReq (Connect)

Tunnel Ack③

TunnelReq L_Data Req (<ACPI>)

Tunnel Ack④

⑤

TunnelReq L_Data Inid. (<ACK>)

Tunnel Ack⑥

TunnelReq L_Data Con (<ACPI>)

Tunnel Ack

TunnelReq L_Data Inid. (<ACPI>)

Tunnel Ack

TunnelReq L_Data Req (<ACK>)

Tunnel Ack

TunnelReq L_Data Con (<ACK>)

Tunnel Ack

TunnelReq L_Data Req (Disconnected)

Tunnel Ack⑨

TunnelReq L_Data Con (Disconnected)

Tunnel Ack

DisconnectReq

DisconnectResp

Establish Tunnel Connection

 Tunnel Data Flow

Terminate Tunnel Connection

⑦

⑧

⑩

KNX ServerKNX Client

Configurable File

JavaScript Files

WXML

WXSS

Resource Files

Operation System

WeChat

Input Box

Input Box

Bike Hiring

Healthcare

Shopping

Tools

…

Front-end Back-end

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

…

Protocol Analyzer
§ 4.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Client Inspector

§ 4.3

(I) Inspecting Client Function

Server Examiner

§ 4.4

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

§ 4.2 Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

BASE Overview

Building Automation Systems

Analyzing BAS Protocol

T 2.1

(I) Collecting the Session Data.

(II) Identifying Fields

(III) Resolving Dependencies

Field 1 Field 2 Field N…

Inspecting BAS Client
T 2.2

(I) Inspecting Client Function

Examining BAS Server
T 2.3

(II) Calculating Code Coverage

40%

80%

(I) Examining Running Status

(II) Handling Throughput

Running

Finished

Core Fuzzer

Packet Analyzing Results

Fuzzing Requests

Fuzzing Responses

Fi
n

al
 R

e
su

lt
s

Building Automation Systems

Feedback

Feedback

Feedback

Feedback

BACnet Application Layer

BACnet Protocol Layer

ISO 8802-2 (IEEE 802.2)
Type

MS/TP PTP

LonTalk
ISO 8802-3
(IEEE 802.3)

ARCNET

Application

Protocol

Data Link

Physical

BACnet Layers
Equivalent
OSI Layers

U
p

p
e

r
la

ye
r

St
ac

k

Lo
w

e
r

la
ye

r
St

ac
k

T3.1 Network-Level Protection: a state machine-based IDS

T3.2 Soft-Level Protection: TrustZone-based SDKs

BAS network protocol stack

 finite state machine malicious state

TrustZone

Secure
 Booting

Input
Validation ASRL

API

Internet Connection

Wireless Connection

Pre-Attack In Progress-Attack Post-Attack

Signals can overlap

Numerous devices

Limited resources

Sophisticated attacks

Signals can overlap

Numerous devices

Challenges

Task I Task 2 Task 3

 Intrusion Detection System Security Proxy Intrusion Detection System

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test

Design Implement TestDesign Implement Test1~4 month
5~8 month

9~12 month

Timelines

Malware (Vetting Bypass)

Code Vetting Bypass Content Vetting Bypass Fake Reporting Malware

Bypassing Vetting via a High-level
Interpreter

Bypassing vetting via a low-level
Virtual Machine

 Concealing Content through Remote
Servers

Concealing Content through Local
Environment

JavaScript AST IR Bytecodeparser codegen assembler

Download

Miniapp

dist/vm.js
Failed Passed

Controlled By Time

Controlled By Remote Server

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References25/28

T12: Reporting Bypassing Malware

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References25/28

T12: Reporting Bypassing Malware

Web App Mobile App Miniapp
Environment Browser Mobile Operating System Suer App
Authority Decentralized Seperate App Store Super App
Vetting Decentralized By Certain App Store By Super App
Reporting Decentralized Write email to App Store Via built-in Inter.

Table: Comparison of the authorities

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References26/28

The World of Mobile Super Apps (“One App with Multiple Services”)

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References27/28

Security Threats

Threats from Vulnerability Exploitation
1 Vulnerabilities in Host Apps

(T1) Platform Discrepancies [WZL23a]
(T2) Privileged APIs [WZL23b]
(T3) Identity Confusion [ZZL+22]

2 Vulnerabilities in Miniapps
(T4) Cross Miniapp Request Forgery [YZL22]
(T5) AppSecret Key Leakage [ZYL23]
(T6) Missing Signature Verification [ZZW23]

Threats from Malware Attacks
1 API Misuse/Abuse (Payload)

(T7) Collecting User Privacy
(T8) Service Abusing
(T9) Grayware

2 Bypassing Vetting
(T10) Code Vetting Bypassing
(T11) Content Vetting Bypassing
(T12) Reporting Bypassing

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References28/28

Other Open Problems

Vulnerability Identification
▶ Memory vulnerabilities (e.g.,

JavaScript engines, native layers)
▶ Logic vulnerabilities in both host apps

(e.g., permission mgmt) and miniapps

Malware Analysis
▶ Semantic-aware miniapp vetting
▶ Developing static, dynamic, or

symbolic analysis tools for miniapp
malware analysis

Security/Privacy Compliance Analysis
▶ Various regulations/laws in

privacy-rich platform
▶ Tools for compliance checks, and even

supply chain analysis

Security Mechanism Standardization
▶ Super app implementation variations

can cause security risks.
▶ Standardizing the interface/APIs for

these platforms.

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References28/28

Thank You

some text
Unpacking the Threats of All-in-One

Mobile Super Apps

Zhiqiang Lin
Distinguished Professor of Engineering

zlin@cse.ohio-state.edu

May 8th, 2024

zlin@cse.ohio-state.edu

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References28/28

References I

Wu Changming and Super Nos, mini-hot, https://github.com/mini-hot/mini-hot.

Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang, and Xueqiang Wang, Demystifying resource management risks
in emerging mobile app-in-app ecosystems, Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 569–585.

Weixin mini program platform operation rules, https://developers.weixin.qq.com/miniprogram/en/product/.

SinkingPeople, How to bypass vetting?, https://blog.csdn.net/weixin_43614065/article/details/125778486.

Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin, Taintmini: Detecting flow of sensitive data in mini-programs with static
taint analysis, ICSE.

Chao Wang, Yue Zhang, and Zhiqiang Lin, One size does not fit all: Uncovering and exploiting cross platform discrepant apis in wechat, 31st
USENIX Security Symposium (USENIX Security 23), 2023.

, Uncovering and exploiting hidden apis in mobile super apps, Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

Chao Wang, Yue Zhang, , and Zhiqiang Lin, Characterizing and detecting bugs in wechat mini-programs, Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security, 2024.

Yuqing Yang, Yue Zhang, and Zhiqiang Lin, Cross miniapp request forgery: Root causes, attacks, and vulnerability detection, Proceedings of
the 29th ACM Conference on Computer and Communications Security, 2022.

https://github.com/mini-hot/mini-hot
https://developers.weixin.qq.com/miniprogram/en/product/
https://blog.csdn.net/weixin_43614065/article/details/125778486

Introduction Threats from Vulnerability Exploitation Threats from Malware Attacks Takeaway References28/28

References II

Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang Lin, A measurement study of wechat mini-apps, Proceedings
of the ACM on Measurement and Analysis of Computing Systems 5 (2021), no. 2, 1–25.

Yue Zhang, Yuqing Yang, and Zhiqiang Lin, Don’t leak your keys: Understanding, measuring, and exploiting the appsecret leaks in
mini-programs., Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023.

Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen, Yuan Zhang, Guangliang Yang, and Min Yang, Identity
confusion in webview-based mobile app-in-app ecosystems, 31st USENIX Security Symposium (USENIX Security’22), 2022.

Yanjie Zhao, Yue Zhang, and Haoyu Wang, Potential risks arising from the absence of signature verification in miniapp plugins, ACM
Workshop on Secure and Trustworthy Superapps (SaTS), 2023.

	Introduction
	Threats from Vulnerability Exploitation
	Threats from Malware Attacks
	Takeaway
	References

