
Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

SMARTGEN: Exposing Server URLs of Mobile Apps
with Selective Symbolic Execution

Chaoshun Zuo Zhiqiang Lin

Department of Computer Science
University of Texas at Dallas

April 6th, 2017

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Server URLs

https://www.google.com/search?q=www+2017

A URL includes
1 Domain name
2 Resource path
3 Query parameters
4 ...

Security Applications
1 Hidden service identification
2 Malicious website detection
3 Server vulnerability fuzzing
4 ...

https://www.google.com/search?q=www+2017

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Server URLs

https://www.google.com/search?q=www+2017

A URL includes
1 Domain name
2 Resource path
3 Query parameters
4 ...

Security Applications
1 Hidden service identification
2 Malicious website detection
3 Server vulnerability fuzzing
4 ...

https://www.google.com/search?q=www+2017

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Server URLs

https://www.google.com/search?q=www+2017

A URL includes
1 Domain name
2 Resource path
3 Query parameters
4 ...

Security Applications
1 Hidden service identification
2 Malicious website detection
3 Server vulnerability fuzzing
4 ...

https://www.google.com/search?q=www+2017

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Browsers’ URLs vs. Mobile Apps’ URLs

Source: cloudxtension.com

cloudxtension.com

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Browsers’ URLs vs. Mobile Apps’ URLs

Source: cloudxtension.com

cloudxtension.com

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Security Implications of the URLs in Mobile Apps

Source: cloudxtension.com

1 Hiding the URLs may allow the
servers to collect some private
sensitive information

2 Mobile apps may talk to some
unwanted services (e.g.,
malicious ads sites)

3 False illusions (security
through obscurity) to the app
developers that their services
are secure (server URLs are
hidden, none knows and none
will attack (or fuzz) them).

It is imperative to expose the server URLs from mobile apps

cloudxtension.com

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Security Implications of the URLs in Mobile Apps

Source: cloudxtension.com

1 Hiding the URLs may allow the
servers to collect some private
sensitive information

2 Mobile apps may talk to some
unwanted services (e.g.,
malicious ads sites)

3 False illusions (security
through obscurity) to the app
developers that their services
are secure (server URLs are
hidden, none knows and none
will attack (or fuzz) them).

It is imperative to expose the server URLs from mobile apps

cloudxtension.com

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

A Movitating Example: ShopClues

Figure: The password reset activity of ShopClues (between 10 million
and 50 million installs).

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

A Movitating Example: ShopClues

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

There was an SQL injection vulnerability
at this password reset interface

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Which Analysis We Should Use?
Static Analysis vs. Dynamic Analysis vs. Symbolic Execution

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

Static Analysis
String
cantenation
Crypto keys

Dynamic Analysis
Random inputs
Incompleteness
...

Symbolic Execution
Systematic
Automated
...

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Which Analysis We Should Use?
Static Analysis vs. Dynamic Analysis vs. Symbolic Execution

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

Static Analysis
String
cantenation
Crypto keys

Dynamic Analysis
Random inputs
Incompleteness
...

Symbolic Execution
Systematic
Automated
...

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Which Analysis We Should Use?
Static Analysis vs. Dynamic Analysis vs. Symbolic Execution

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

Static Analysis
String
cantenation
Crypto keys

Dynamic Analysis
Random inputs
Incompleteness
...

Symbolic Execution
Systematic
Automated
...

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Which Analysis We Should Use?
Static Analysis vs. Dynamic Analysis vs. Symbolic Execution

PUT /api/v9/forgotpassword?key=d12121c70dda5edfgd1df6633fdb36c0
HTTP/1.1
Content-Type: application/json
Connection: close
User-Agent: Dalvik/1.6.0 (Linux; Android 4.2)
Host: sm.shopclues.com
Accept-Encoding: gzip
Content-Length: 73

{"user_email":”testmobileserver@gmail.com","key":"d12121c70dda5e
dfgd1df6633fdb36c0"}

Static Analysis
String
cantenation
Crypto keys

Dynamic Analysis
Random inputs
Incompleteness
...

Symbolic Execution
Systematic
Automated
...

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Symbolic Execution
Generating Inputs Based on Program Code

1 package com.shopclues;
2
3 class y implements View$OnClickListener {
4 EditText b;
5 ...
6 public void onClick(View arg5) {
7 String v0 = this.b.getText().toString().trim();
8 if(v0.equalsIgnoreCase("")) {
9 Toast.makeText(this.a, "Email Id should not be

empty", 1).show();
10 }
11 else if(!al.a(v0)) {
12 Toast.makeText(this.a, "The email entered is not

a valid email", 1).show();
13 }
14 else if(al.b(this.a)) {
15 this.a.c = new ac(this.a, v0);
16 this.a.c.execute(new Void[0]);
17 }
18 else {
19 Toast.makeText(this.a, "Please check your

internet connection", 1).show();
20 }
21 }
22 }

23 package com.shopclues.utils;
24
25 public class al {
26 ...
27 public static boolean a(String arg1) {
28 boolean v0;
29 if(arg1 == null) {
30 return false;
31 }
32 else {
33 v0 = Patterns.EMAIL_ADDRESS.

matcher(((CharSequence)arg1)).matches();
34 }
35 return v0;
36 }
37 }

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Various Constraints in Mobile Apps

Various Constraints
1 Two text-box’s inputs need to be equivalent
2 The “age” needs to be greater than 18
3 A “zip code” needs to be a five digit sequence
4 A “phone number” needs to be a phone number
5 A file name extension needs to be some type (e.g., jpg)
6 ...

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Introducing SMARTGEN

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Automated
Systematic
Scalable

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Introducing SMARTGEN

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Static analysis
Selective symbolic execution
Dynamic analysis

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Static Analysis

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Using soot [soo] framework
Building extended call graph (ECG)
EdgeMiner [CFB+15] for callbacks

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Selective Symbolic Execution

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Data flow analysis (w/
FlowDroid [ARF+14])
Extract the path constraints
Solve them w/ Z3-str [ZZG13]

Why Selective: only on the
execution path of network
sending APIs (to trigger the
request messages)

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Selective Symbolic Execution

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Data flow analysis (w/
FlowDroid [ARF+14])
Extract the path constraints
Solve them w/ Z3-str [ZZG13]

Why Selective: only on the
execution path of network
sending APIs (to trigger the
request messages)

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

System code static rewriting
Repackaging the apps
System debugging tool adb

A new approach that
leverages API hooking
and Java reflection

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

System code static rewriting
Repackaging the apps
System debugging tool adb

A new approach that
leverages API hooking
and Java reflection

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

1

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

1

2

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

1

2

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Runtime Instrumentation

1

2

3

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Security Applications

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Security
Applications

SQL Injection
Cross Site Scripting
Others (e.g., malicious URL detection)

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

SQL Injection

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Fuzzing (SQL
Injection)

“SELECT PG_SLEEP(5);”, “SELECT PG_SLEEP(10);”
“’;WAITFOR DELAY ’0:0:5’-”
“;SELECT COUNT(*) FROM SYSIBM.SYSTABLES”

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Malicious URL Detection

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

URLs

Dynamic Analysis

URLs
Classification

Malware sites
Compromised sites
VirusTotal provides services for these detections

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Overall Experimental Results

Item Value
Apps 5,000
Size of the Dataset (G-bytes) 126.2
Time of the first two phases analyses (s) 90,143 (25 hours)
Targeted API Calls 147,327
Constraints 47,602
UI Configuration files generated 25,030
Time of Dynamic Analysis (s) 486,446 (135 hours)
Request Messages 257,755
Exposed URLs 297,780
Unique Domains 18,193
Logged Message Size (G-bytes) 24.0
Σ Malicious URLs 8,634

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Overall Experimental Results

Item Value
Apps 5,000
Size of the Dataset (G-bytes) 126.2
Time of the first two phases analyses (s) 90,143 (25 hours)
Targeted API Calls 147,327
Constraints 47,602
UI Configuration files generated 25,030
Time of Dynamic Analysis (s) 486,446 (135 hours)
Request Messages 257,755
Exposed URLs 297,780
Unique Domains 18,193
Logged Message Size (G-bytes) 24.0
Σ Malicious URLs 8,634

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Statistics on the Extracted String Constraints

Constraints Name # Constraints
Not null 25,855
String_length 13,858
String_isEmpty 377
String_contains 196
String_contentEquals 43
String_equals 3,087
String_equalsIgnoreCase 991
String_matches 448
String_endsWith 11
String_startsWith 64
TextUtils_isEmpty 2,355
Matcher_matches 317

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Comparison w/ Monkey [mon]
WWW’17, April 2017, Perth, Australia Chaoshun Zuo and Zhiqiang Lin

Table 1: Summary of the Performance of SmartGen.

Item Value
Apps 5, 000
Size of the Dataset (G-bytes) 126.2
Time of the rst two phases analyses (s) 90, 143
Targeted API Calls 147, 327
Constraints 47, 602
UI Con guration les generated 25, 030
Time of Dynamic Analysis (s) 486, 446
Request Messages 257, 755
Exposed URLs 297, 780
Unique Domains 18, 193
Logged Message Size (G-bytes) 24.0

Table 2: Statistics of the Extracted String Constraints

Constraints Name # Constraints
Not null 25, 855
String length 13, 858
String isEmpty 377
String contains 196
String contentEquals 43
String equals 3, 087
String equalsIgnoreCase 991
String matches 448
String endsWith 11
String startsWith 64
TextUtils isEmpty 2, 355
Matcher matches 317

seconds on average. During this analysis, it identi ed 147, 327 calls
to the targeted APIs, extracted 47, 602 constraints, and generated
25, 030 UI con guration les based on the solved constraints.
Meanwhile, the details of the extracted string constraints are

presented in Table 2. (Note that we also encountered other integer
constraints, such as when a value needs to be greater than 18; the
details of these constraints are not presented here). We notice
that, interestingly, there are many “Not null” constraints. !is is
actually because during an app execution, NullPointermay cause
crashes and developers (or the system code) thus check it very o"en.
Meanwhile, to validate whether a UI item contains a user input,
we noticed developers also o"en use a String length constraint
(to make sure it is not 0). Some apps also use String length

to validate phone number input. Also, we found some apps just
use String contains with “@” to validate an email address input,
and some other apps use sophisticated regular expression (e.g.,
Matcher matches) for the matching.
With the solved constraints, we then performed dynamic anal-

ysis on each app in our Galaxy phone. In total, it took 486, 446
seconds (i.e., 135 hours) to execute these 5, 000 apps (each app
needed 97 seconds on average). Note that among the 97 seconds,
the installation and uninstallation time is on average 17 seconds.
However, if we execute an app inside an emulator, the installation
time for an app with 25M will take about 60 seconds. !at is one
of the reasons why we designed SmartGen to use a real phone.
During the dynamic analysis, we observed 257, 755 request mes-
sages (55.7% uses HTTP protocol, and 44.3% uses HTTPS) generated
by the tested apps, and in total 297, 780 URLs in both request and
response messages. Among them, there are 18, 193 unique domains
in these URLs. !e nal size for all the traced request and response
messages collected at our proxy is 24.0 GB.
Comparison with Monkey. To understand the contribution of
our selective symbolic execution, we compare SmartGen with a

Execu
tion T

ime

Req
uest M

essag
es

Exp
osed

URLs

Uni
que D

omai
ns

Logg
ed M

essag
e Size

0%

100%

200%

300%
Re
la
tiv
e
Pe
rfo

rm
an
ce

w/ Monkey
w/ SmartGen

Figure 6: Comparison between SmartGen and Monkey.

widely used dynamic analysis tool Monkey [7]. At a high level,
Monkey is a program, executed in an emulator or a real phone,
which can generate pseudo-random streams of user events, such
as clicks, touches, or gestures, as well as a number of system-level
events, all for app testing. For a fair comparison, we also run Mon-
key in our real Galaxy phone to test each of our app, and con gure
Monkey to generate 2, 000 events under the time interval of 100
milliseconds. !at is, for each app, Monkey will take up to 200
seconds to just test it.

In total it took 1, 083, 530 seconds (i.e., 301 hours) to process these
apps. Each app took on average 216.7 seconds (among them around
200 seconds for the testing, and 17 seconds for the installation and
uninstallation). We have to also note that it is not 100% automated
while using Monkey for the testing. !is is because Monkey ran-
domly sends events to the system without specifying the recipients.
!ese random inputs may click system bu$ons, which may lock
the screen, turn o& the network connection, and even shutdown
the phone. !erefore, we disabled the screen locking functionality,
and also developed a daemon program to constantly check the In-
ternet connectivity and turn on the networking if necessary, but
we cannot disable the phone power o& event and must manually
power on the phone. !is is the only event Monkey cannot handle
automatically and we encountered 17 phone power o& events. We
excluded the power-o& and restart time in our evaluation in this
case. For all these tested apps, with Monkey they generated 79, 778
request messages, with 6, 384 domain names. !e total size of the
logged message is 12.8 GB.
A detailed comparison between SmartGen and Monkey for

these tested apps is presented in Fig. 6. We compare them based
on their execution time, the total number of request messages
generated, the total number of domains in the requested message,
and nally the total size of the request message. We can see that
SmartGen only took 53%, i.e., (90, 143+486, 446)/1, 083, 530, of the
execution time of Monkey, but it generates 3.2X request messages,
2.3X unique URLs, 1.9X unique domains, and 1.9X logged message
size, compared to the result from Monkey.

5.3 Harmful URL Detection
Having so many URLs from the top 5, 000 mobile apps, we are then
interested in whether there is any harmful URLs. To this end, we
submi$ed all of the exposed 297, 780 URLs to harmful URL detection

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Security Application: Malicious URL detection
SmartGen: Exposing Server URLs of Mobile Apps With Selective Symbolic Execution WWW’17, April 2017, Perth, Australia

Table 3: Statistics of Harmful URLs Detected by Each Engine

Detection #Phishing #Malware #Malicious Σ #Harmful
Engine Sites Sites URLs
ADMINUSLabs 0 0 4 4
AegisLab WebGuard 0 0 1 1
AutoShun 0 0 863 863
Avira 2062 941 0 3003
BitDefender 0 191 0 191
Blueliv 0 0 5 5
CLEAN MX 0 0 14 14
CRDF 0 0 150 150
CloudStat 0 0 1 1
Dr.Web 0 0 2330 2330
ESET 0 75 0 75
Emsiso 1 43 0 44
Fortinet 8 469 0 477
Google Safebrowsing 0 13 2 15
Kaspersky 0 2 0 2
Malwarebytes hpHosts 0 1103 0 1103
ParetoLogic 0 800 0 800
!ick Heal 0 0 2 2
!"era 0 0 6 6
SCUMWARE.org 0 8 0 8
Sophos 0 0 56 56
Sucuri SiteCheck 0 0 248 248
#reatHive 0 0 8 8
Trustwave 0 0 80 80
Websense #reatSeeker 0 0 56 56
Yandex Safebrowsing 0 173 0 173
Σ#Harmful URLs 2071 3818 3826 9715
Σ#Unique Harmful URLs 2071 3722 3228 8634

Table 4: # Engines of Harmful URLs

Detected by # Engines # Unique Harmful URLs
8 1
7 1
6 2
5 13
4 63
3 33
2 751
1 7770
Σ Unique Harmful URLs 8634

service at VirusTotal, which then further identi%ed 8, 634 unique
harmful URLs. Note that VirusTotal has integrated 68 malicious
URL scanners (as time of this experiment), and each submi"ed brand
new URL is analyzed by all of the scanners. #e scanners that have
identi%ed at least one harmful URLs are reported in the %rst column
of Table 3, followed by the number of Phising sites, the number of
malware (i.e., the URL is identi%ed as malware), and the number of
malicious sites from the 2nd to the 4th columns, respectively. #e
last column reports the total number of harmful URLs identi%ed by
the corresponding scanners, and the last row reports the number
of unique URLs in each category. #e total number of unique
malicious URL is 8, 634 because there are 387 sites being detected
both malware and malicious. Also, note that one harmful URL can
be identi%ed by several engines. #at is, there are some overlapped
URLs in the last column of Table 3. To clearly show those overlaps,
we present the number of harmful URLs and the number of engines
that recognize those harmful URLs in Table 4. Interestingly, we
can see that most harmful URLs are detected by just one of the
engines, and only one URL is detected simultaneously by 8 engines.
Based on the timestamp of the queried result from VirusTotal, we
notice that 83% of the URLs are the %rst time analyzed by VirusTotal.
Among the detected 8, 634 URLs, we also notice that 84% of them
are new harmful URLs (because of our research).

While we could just trust the detection result from VirusTotal,
to con%rm indeed these URLs are malicious we manually examined
the one that has been identi%ed by 8 engines. Interestingly, this
URL actually points to an APK %le. We then visited this URL and
downloaded the APK. We also submi"ed this suspicious APK %le to
VirusTotal, and this time, 14 out of 55 %le scanners reported that this
APK is malicious. We reverse engineered this %le and found it tried
to acquire the root privilege of the phone by exploiting the kernel
vulnerabilities, which undoubtedly proved it is a harmful URL.

6 LIMITATIONS AND FUTUREWORK
SmartGen clearly has limitations. First, there might be some miss-
ing path in ECG (if an edge is missed by EdgeMiner [16]), or infea-
sible paths that cannot be solved (currently our solver terminates
if it cannot provide any result a er 300 seconds). Second, not all
of the app activities have been explored, especially if there is an
access control in the app. More speci%cally, certain app activities
are only displayed if the user has successfully logged in. However,
SmartGen did not perform any automatic registration with these
5, 000 apps, and it is certainly not able to trigger these activities.
#erefore, how to trigger these activities for a given mobile app is
one of our immediate future works.
Currently, we only demonstrated how to use the exposed URLs

to detect whether an app communicates with any malicious sites.
#ere are certainly many other applications such as server vulner-
ability identi%cation [31]. For instance, we can use the generated
server request messages as seeds to perform the penetration testing
to see whether the server contains any exploitable vulnerabilities
such as SQL injection, cross-site-scripting (XSS), cross-site request
forgery (CSRF), etc. We leave the study of the vulnerability fuzzing
to our another future work.
We can also apply the selective symbolic execution of SmartGen

to solve other problems. For instance, by changing the targeted
APIs to those security-sensitive ones (e.g., TelephonyManager.
getDeviceId), we can collect and solve the constraints along the
execution path to trigger these APIs. #rough this, we are likely
able to further observe how sensitive data is collected and perhaps
%nd privacy leakage vulnerabilities in real apps. Part of our future
work will also explore these applications.

7 CONCLUSION
We have presented SmartGen, a tool to automatically generate
server request messages and expose the server URLs from a mobile
app by using selective symbolic execution, and demonstrated how
to use SmartGen to detect malicious sites based on the exposed
URLs for the top 5, 000 Android apps in Google Play. Unlike prior
e'orts, SmartGen focuses on the constraints from the UI elements
and solves them to trigger the networking APIs. Built atop API
hooking and Java re*ection, it also features a new runtime app in-
strumentation technique that is able to more e+ciently instrument
an app and perform an in-context analysis. Our evaluation with the
top 5, 000 ranked mobile apps have demonstrated that with Smart-
Gen we are able to %nd 297, 780 URLs, and among them actually
8, 634 are malicious sites according to the URL classi%cation result
from VirusTotal.

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Related Work

1 Dynamic Analysis. Monkey [mon] automatically executes
and randomly navigates an app. AppsPlayground [RCE13]
and SMV-Hunter [SSG+14] more intelligent. A3E [AN13], a
targeted exploration of mobile apps. DynoDroid [MTN13]
instruments the Android framework and uses adb to
monitor UI interaction and generate UI events.

2 Symbolic Execution. Symbolic execution in app testing in
general [MMP+12], path exploration [ANHY12], and
malware analysis [WL16]. Closely related work
IntelliDroid but it only focuses on malware and lacks
generality of UI rich mobile app analysis.

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Related Work

HTTPSHTTPS

Encryption, hashing, signing

1 Mobile App Vulnerability Discovery. A large body of
efforts have focused on discovering vulnerabilities in
mobile apps. TaintDroid [EGC+10], PiOS [EKKV11],
CHEX [LLW+12], SMV-Hunter [SSG+14].

1 Remote Server Vulnerability Discovery. Few efforts
(e.g., AUTOFORGE [ZWWL16]) including smartgen [ZL17].
have been focusing on identifying the vulnerabilities in
app’s server side.

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

SMARTGEN [ZL17]
A Fully Automated, Symbolic Execution Based, Mobile App Execution Framework

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Security
Applications

SMARTGEN

A fully automated mobile app execution
framework via symbolic execution
Can be used to test various security
vulnerabilities in mobile systems

Experimental Result w/ 5, 000 apps

Each app has 1,000,000 installs

These apps actually talk to 2, 071
phishing sites, 3, 722 malware
sites, and 3, 228 malicious sites

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

Thank You

APKAPK Building ECG Extracting Path
Constraints

Solving the
Constraints

Runtime
Instrumentation

Request
Message

Generation

Selective Symbolic

Execution

Real Phone

Static Analysis

Request

Messages

Dynamic Analysis

Security
Applications

Acknowledgement

AFOSR, NSF
VirusTotal (premium services) firstname.lastname@utdallas.edu

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

References I

Tanzirul Azim and Iulian Neamtiu, Targeted and depth-first exploration for systematic testing of android apps,
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (New York, NY, USA), OOPSLA ’13, ACM, 2013, pp. 641–660.

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang, Automated concolic testing of
smartphone apps, Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering (New York, NY, USA), FSE ’12, ACM, 2012, pp. 59:1–59:11.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel, Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps, Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA), PLDI ’14, ACM, 2014,
pp. 259–269.

Marshall Beddoe, The protocol informatics project, http://www.4tphi.net/~awalters/PI/PI.html.

Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni Vigna, and
Yan Chen, Edgeminer: Automatically detecting implicit control flow transitions through the android
framework., Proceedings of the 20th Annual Network and Distributed System Security Symposium
(NDSS’15), 2015.

Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang, Discoverer: Automatic protocol reverse
engineering from network traces, Proceedings of the 16th USENIX Security Symposium (Security’07)
(Boston, MA), August 2007.

Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song, Dispatcher: Enabling active
botnet infiltration using automatic protocol reverse-engineering, Proceedings of the 16th ACM Conference on
Computer and and Communications Security (CCS’09) (Chicago, Illinois, USA), 2009, pp. 621–634.

http://www.4tphi.net/~awalters/PI/PI.html

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

References II

Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H. Katz, Protocol-independent adaptive replay of
application dialog, Proceedings of the 13th Annual Network and Distributed System Security Symposium
(NDSS’06) (San Diego, CA), February 2006.

Juan Caballero and Dawn Song, Polyglot: Automatic extraction of protocol format using dynamic binary
analysis, Proceedings of the 14th ACM Conference on Computer and and Communications Security
(CCS’07) (Alexandria, Virginia, USA), 2007, pp. 317–329.

W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth, TaintDroid: an
information-flow tracking system for realtime privacy monitoring on smartphones, OSDI, 2010.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna, Pios: Detecting privacy leaks in ios applications, NDSS, 2011.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, Automatic protocol format reverse engineering
through context-aware monitored execution, Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08) (San Diego, CA), February 2008.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang, Chex: statically vetting android apps for
component hijacking vulnerabilities, Proceedings of the 2012 ACM conference on Computer and
communications security, ACM, 2012, pp. 229–240.

Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey M. Voelker, Unexpected means
of protocol inference, Proceedings of the 6th ACM SIGCOMM on Internet measurement (IMC’06) (Rio de
Janeriro, Brazil), ACM Press, 2006, pp. 313–326.

Nariman Mirzaei, Sam Malek, Corina S Păsăreanu, Naeem Esfahani, and Riyadh Mahmood, Testing android
apps through symbolic execution, ACM SIGSOFT Software Engineering Notes 37 (2012), no. 6, 1–5.

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

References III

Ui/application exerciser monkey, https://developer.android.com/tools/help/monkey.html.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik, Dynodroid: An input generation system for android apps,
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, 2013,
pp. 224–234.

Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda, Prospex: Protocol
Specification Extraction, IEEE Symposium on Security & Privacy (Oakland, CA), 2009, pp. 110–125.

James Newsome, David Brumley, Jason Franklin, and Dawn Song, Replayer: Automatic protocol replay by
binary analysis, Proceedings of the 13th ACM Conference on Computer and and Communications Security
(CCS’06), 2006.

Vaibhav Rastogi, Yan Chen, and William Enck, Appsplayground: Automatic security analysis of smartphone
applications, Proceedings of the Third ACM Conference on Data and Application Security and Privacy (New
York, NY, USA), CODASPY ’13, ACM, 2013, pp. 209–220.

A framework for analyzing and transforming java and android apps, https://sable.github.io/soot/.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur Khan, Smv-hunter: Large
scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android apps, Proceedings of the
21st Annual Network and Distributed System Security Symposium (NDSS’14) (San Diego, CA), February
2014.

Michelle Y Wong and David Lie, Intellidroid: A targeted input generator for the dynamic analysis of android
malware, Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS’16)
(San Diego, CA), February 2016.

https://developer.android.com/tools/help/monkey.html
https://sable.github.io/soot/

Motivation SMARTGEN Design Applications Evaluation Related Work Conclusion References

References IV

Gilbert Wondracek, Paolo Milani, Christopher Kruegel, and Engin Kirda, Automatic network protocol
analysis, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS’08)
(San Diego, CA), February 2008.

Chaoshun Zuo and Zhiqiang Lin, Exposing server urls of mobile apps with selective symbolic execution,
Proceedings of the 26th World Wide Web Conference (WWW’17) (Perth, Australia), April 2017.

Chaoshun Zuo, Wubing Wang, Rui Wang, and Zhiqiang Lin, Automatic forgery of cryptographically
consistent messages to identify security vulnerabilities in mobile services, Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS’16) (San Diego, CA), February 2016.

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh, Z3-str: A z3-based string solver for web application
analysis, Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, 2013,
pp. 114–124.

	Motivation
	SmartGen Design
	Applications
	Evaluation
	Related Work
	Conclusion
	References

